Roll No

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)

Affiliated to Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow

M.TECH

FIRST YEAR (SEMESTER-II) THEORY EXAMINATION (2020-2021)

(Objective Type)

Subject Code: AMTAI0201 Subject: <u>Machine Learning</u>

General Instructions:

All questions are compulsory.

Question No- 1 to 5 are objective type question carrying 2 marks each. Question No- 6 to 20 are also objective type/Glossary based question carrying 2 marks each.

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Options Randomization	Туре	Difficulty	Correct	Option1	Option2	Option3	Option4
1	Which of the following algorithm are not an example of ensemble learning algorithm?		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	Decision Trees	Random Forest	Extra Trees	Gradient Boosting	Decision Trees
2	Where does the Bayes rule can be used?		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	Answering probabilistic query	Solving queries	Increasing complexity	Decreasing complexity	Answering probabilistic query
3	What is the name of node which take binary values TRUE (T) OR FALSE (F)?		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	Binary Node	Dual Node	Binary Node	Two-way Node	Ordered Node
4	Function of dendrites is:		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	Receptors	Receptors	Transmitter	Both receptor & amp; transmitter	None of the Above
5	Which of the following are not learning methods in ML?		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	Human Prediction Learning	Supervised Learning	Human Prediction Learning	Semi-Supervised Learning	Un-Supervised Learning
6	Where does Bayes rules can be used_		Glossary I	Glossary I	2		Single Choice	Brilliant	Answering Probabilistic Queries	Artificial Neural Network	Discrete and Continous	Answering Probabilistic Queries	
7	The full form of ANN		Glossary I	Glossary I	2		Single Choice	Brilliant	Artificial Neural Network	Artificial Neural Network	Discrete and Continous	Answering Probabilistic Querie	
8	In Baysian Network Variable is		Glossary I	Glossary I	2		Single Choice	Brilliant	Discrete and Continous	Artificial Neural Network	Discrete and Continous	Answering Probabilistic Queries	
9	Support Vector Machine (SVM) can be used for		Glossary II	Glossary II	2		Single Choice	Brilliant	classification and Regression	classification and Regression	Line	Decision Boundaries	
10	In SVM, Hyper-plane is a		Glossary II	Glossary II	2		Single Choice	Smart	Decision Boundaries	classification and Regression	Line	Decision Boundaries	
	In SVM, if the number of input features is 2, then the Hyper- plane is a		Glossary II	Glossary II	2		Single Choice	Smart	Line	classification and Regression	Line	Decision Boundaries	
12	A decision tree created with the aim to achieve very minimal entropy may result in		Glossary III	Glossary III	2		Single Choice	Brilliant	Over-Fitting	Over-Fitting	Under-Fitting	Top-Down	
13	Pre-pruning the decision tree may result in		Glossary III	Glossary III	2		Single Choice	Brilliant	Under-Fitting	Over-Fitting	Under-Fitting	Top-Down	
14	A decision tree is built in fashion		Glossary III	Glossary III	2		Single Choice	Smart	Top-Down	Over-Fitting	Under-Fitting	Top-Down	
15	is used to influence a variable directly by all the others.		Glossary IV	Glossary IV	2		Single Choice	Brilliant	Fully Connected	Description of the	Fully Connected	Conditionally independent	
16	is the consequence between a node and its predecessors while creating Bayesian Network.		Glossary IV	Glossary IV	2		Single Choice	Brilliant	Conditionally independent	Complete Description of the domain	Fully Connected	Conditionally independent	
17	The Bayesian network provides		Glossary IV	Glossary IV	2		Single Choice	Smart	Description of the	Description of the	Fully Connected	Conditionally independent	

Max. Mks. : 40 Time : 70 Minutes

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Options Randomization	Туре	Difficulty	Correct	Option1	Option2	Option3	Option4
18	The output at each node is called		Attempt All Questions	3X2=06	2		Single Choice	Smart	Node Value	Bayesian Network	Node Value	FeedBack	
19	In which ANN,loops are allowed.		Attempt All Questions	3X2=06	2		Single Choice	Brilliant	FeedBack	Bayesian Network	Node Value	FeedBack	
20	The full form of BN in Neural Networks is		Attempt All Questions	3X2=06	2		Single Choice	Smart	Bayesian Network	Bayesian Network	Node Value	FeedBack	