Printed	Page:-
---------	--------

Roll No Roll No

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)

Affiliated to Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow MBA

FIRST YEAR (SEMESTER-II) THEORY EXAMINATION (2020-2021) (Objective Type)

Subject Code: AMBA0205

Subject: Quantitative Techniques for Managers

Max. Mks. : 70

Time : 70 Minutes

General Instructions:

All questions are compulsory.

Question No- 1 to 15 are objective type question carrying 2 marks each.

Question No- 16 to 35 are also objective type/Glossary based question carrying 2 marks each.

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Options Randomization	Туре	Difficulty	Correct	Option1	Option2	Option3	Option4
1	A model is		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	all of the above	an essence of reality	an approximation	an idealization	all of the above
2	Operations research analysts do not		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	predict future operations	predict future operations	build more than one model	collect relevant data	recommend decision and accept
3	Models are obtained by enlarging or reducing the size of the item		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	Iconic Models	Iconic Models	Analogue Models	Symbolic Models	None of the above
4	One disadvantage of using NW corner rule to find initial solution to the transportation table is that		Single Choice Questions	Single Choice Questions	2		Single Choice	Genius	It does not take into account the cost of transportation	It is complicated to use	It does not take into account the cost of transportation	It leads to a degenerate initial solution	All of the above
5	The solution to a transportation problem with 'm' rows(supplies) and 'n' columns(destination) is feasible if number of positive allocations are		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	m+n-1	m+n	mn	m+n-1	m+n+l
6	The maximization type of Transportation Problem can be converted into minimization type		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	By subtracting the all the unit costs from the highest unit cost of the table	By subtracting Smallest cost element from all other cost elements	By adding Smallest cost elements to all other cost elements	By subtracting the all the unit costs from the highest unit cost of the table	None of these
7	In Game theory, the outcome or consequence of a Strategy is referred to as the		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	Payoff	Payoff	Penalty	Reward	End game Strategy
8	A mixed strategy game can be solved by		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	All the above	Algebraic method	Graphical method	Matrix method	All the above
9	An optimal assignment requires that the maximum number of lines which can be drawn through squares with zero opportunity cost be equal to the number of		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	Rows or columns	Rows or columns	Rows and columns	Rows + columns-1	None of these
10	The Pattern in which customer wants to join the queue , but due to long queue, he does not join the queue		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	Balking	Balking	Reneging	Queuing	Jocking
11	In sequencing problem, the order of completion of jobs is called		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	job sequence	completion sequence	job sequence	processing order	job order
12	In general sequencing problem will be solved by using		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	Johnson and Bellman method	Hungarian Method.	Johnson and Bellman method	Simplex method.	Flood's technique.
13	Group replacement policy is most suitable for		Single Choice Questions	Single Choice Questions	2		Single Choice	Smart	Street light bulbs	Trucks	Infant machines	Street light bulbs	New cars

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Options Randomization	Туре	Difficulty	Correct	Option1	Option2	Option3	Option4
14	Replacement of an item become necessary when		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	an old item becomes too expensive to operate or maintain	an old item becomes too expensive to operate or maintain	when your operator desires to work on a new machine	when your opponent changes his machine in his unit	when the company has surplus funds to spend
15	In a network diagram an event is denoted by the symbol		Single Choice Questions	Single Choice Questions	2		Single Choice	Brilliant	Circle	Arrow	Straight line	Square	Circle
16	In the replacement model, we must consider the change of with time.		Glossary I	Glossary I	2		Single Choice	Brilliant	money value	average cost	optimal time	money value	Street electric bulbs
17	We should replace the items in the replacement model, when the of the items per year is less than its maintenance cost.	Sin fill have covered sold requestyle extents.	Glossary I	Glossary I	2		Single Choice	Brilliant	average cost	average cost	optimal time	money value	Street electric bulbs
18	The best example of group replacement model is		Glossary I	Glossary I	2		Single Choice	Brilliant	Street electric bulbs	average cost	optimal time	money value	Street electric bulbs
19	The objective of replacement theory is to evaluate the when the items should be replaced.	a On til two over intrapolej entin.	Glossary I	Glossary I	2		Single Choice	Brilliant	optimal time	average cost	optimal time	money value	Street electric bulbs
20	The time spent in a queuing system before the service starts is known as		Glossary II	Glossary II	2		Single Choice	Smart	waiting time		waiting time	Queuing	Reneging
21	If the customer enters a queue but decided to leave before being served, this behavior is called		Glossary II	Glossary II	2		Single Choice	Smart	Reneging		waiting time	Queuing	Reneging
22	is used to know the average number of customers in the queue system when arrival rate is and service rate is .		Glossary II	Glossary II	2		Single Choice	Smart			waiting time	Queuing	Reneging
23	The presence of a group of customers who arrive randomly to receive some service is identified as		Glossary II	Glossary II	2		Single Choice	Smart	Queuing		waiting time	Queuing	Reneging
24	An assignment problem can be viewed as a special case of transportation problem in which the capacity from each source is and the demand at each destination is one.		Glossary III	Glossary III	2		Single Choice	Smart	one	Unchanged	2n-1	one	rows or columns
25	If some constant is added to each cost of the assignment matrix then the optimal solution remains		Glossary III	Glossary III	2		Single Choice	Smart	Unchanged	Unchanged	2n-1	one	rows or columns
26	An optimal assignment requires that the maximum number of lines which can be drawn through squares with zero opportunity cost be equal to the number of		Glossary III	Glossary III	2		Single Choice	Smart	rows or columns	Unchanged	2n-1	one	rows or columns
27	Every basic feasible solution of a general assignment problem, having square matrix of order n, should have assignments equal to		Glossary III	Glossary III	2		Single Choice	Smart	2n-1	Unchanged	2n-1	one	rows or columns
28	The degeneracy in the transportation problem indicate that		Glossary IV	Glossary IV	2		Single Choice	Brilliant	Multiple optimal solutions exist	Penalty	Multiple optimal solutions exist	MODI method	Goods
29	The equation is used to calculate in		Glossary IV	Glossary IV	2		Single Choice	Brilliant	MODI method	Penalty	Multiple optimal solutions exist	MODI method	Goods
30	The in Vogel's approximation method represents the difference between smallest two costs of respective row or column.		Glossary IV	Glossary IV	2		Single Choice	Brilliant	Penalty	Penalty	Multiple optimal solutions exist	MODI method	Goods
31	The transportation algorithm can be used for minimizing the transportation cost of from O origins and D destinations.		Glossary IV	Glossary IV	2		Single Choice	Brilliant	Goods	Penalty	Multiple optimal solutions exist.	MODI method	Goods
32	Operations research is the application of methods to arrive at the optimal solutions to the problems.		Glossary V	Glossary V	2		Single Choice	Smart	Scientific	Predict future operation	Scientific	Multidisciplinary&nbs p;	Mathematical model

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Options Randomization	Туре	Difficulty	Correct	Option1	Option2	Option3	Option4
33	Operation Research approach is		Glossary V	Glossary V	2		Single Choice	Smart	Multidisciplinary	Predict future operation	Scientific	Multidisciplinary	Mathematical model
34	Operation research analyst do not		Glossary V	Glossary V	2		Single Choice	Smart	Predict future operation	Predict future operation	Scientific	Multidisciplinary	Mathematical model
35	Operation research is typically based on the use of		Glossary V	Glossary V	2		Single Choice	Smart	Mathematical model	Predict future operation	Scientific	Multidisciplinary	Mathematical model