NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
 (An Autonomous Institute)

Affiliated to Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow
B.TECH

FIRST YEAR (SEMESTER-II) THEORY EXAMINATION (2020-2021)
(Objective Type)
 Subject: Engineering Physics

General Instructions:
All questions are compulsory.
Question No- 1 to 15 are objective type question carrying 2 marks each
Question No- 16 to 35 are also objective type/Glossary based question carrying 2 marks each.

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Options Randomization	Type	Difficulty	Correct	Option1	Option2	Option3	Option4
1	Special theory of relativity treats problems involving		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Smart	Inertial frame of reference	Inertial frame of reference	Non-accelerated frame of reference	Non-inertial frame of reference	Accelerated frame of reference
2	Michelson and Morley experiment was designed to measure		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	The velocity of earth relative to ether	The relativistic mass of an electron	The relativistic energy of electron	The velocity of earth relative to ether	The acceleration of gravity on earth surface
3	Two photons of light are approaching each other, their relative speed is		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	c	0	c/2	c	less than c
4	Matter wave are ?		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	Wave associate with moving particle	EM wave	Sound wave	Wave associate with moving particle	None of these
5	Light has		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	Both of these nature	. Wave nature	Particle nature	Both of these nature	. None of these
6	Among the following particles, which one will have the shortest wavelength associated with it for the same velocity		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	\α particle	\α particle	\β particle	Proton	Neutron
7	Which of the following conserved when light waves interfere		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	Energy	Amplitude	Energy	Intensity	Momentum
8	Two light sources are said to be coherent if waves produced by them have the same		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	Frequency and constant phase difference	Amplitude Only	Wavelength Only	Amplitude and Wavelength	Frequency and constant phase difference
9	The diffraction Phenomenon is		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	Bending of light around an obstacle	Bending of light around an obstacle	Rectilinear propagation of light	Oscillation of light wave in one direction	None of above
10	Fermi level lies exactly in the centre of the forbidden energy gap (Eg) between the conduction band and valence band		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	Intrinsic semiconductor	N \– type semiconductor	Intrinsic semiconductor	P \– type semiconductor	None of these
11	In a semiconductor the gap between conduction band and valence band is of the order of		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	1 eV	5 eV	10 eV	15 eV	1 eV
12	Permanent memory is		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Smart	ROM	ROM	RAM	Program Tape	Plain Disc
13	The inner core of an optical fiber is \qquad in composition.		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	Glass or Plastic	liquid	Copper	Bimetallic	Glass or Plastic
14	When a beam of light travels through media of two different densities, if the angle of incidence is greater than the critical angle, \qquad occurs.		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Smart	Total internal reflection	Total internal reflection	Refraction	Incidence	Criticism
15	Relation which was proved by Einstein\’s at thermal equilibrium state is		Attempt All Questions	$15 \times 2=30$	2		Single Choice	Brilliant	B12=B21	B12=B13	B12 $=$ B21	B22=B23	B21=B31

Q.No	Question Content	Question Image	Category	$\begin{array}{c\|} \hline \text { Sub } \\ \text { Category } \end{array}$	Marks	Options Randomization	Type	Difficulty	Correct	Option1	Option2	Option3	Option4
16	In graded index fiber, diameter of core is \…\…		Glossary I	Glossary I	2		Single Choice	Brilliant	Non uniform	Uniform	$\begin{gathered} 30 \text { \– } 100 \\ \text { \µm } \\ \hline \end{gathered}$	Non uniform	5-10 \µm
17	In step index fiber, diameter of core is \…\…		Glossary I	Glossary I	2		Single Choice	Smart	Uniform	Uniform	$\begin{gathered} 30 \text { \– } 100 \\ \text { \µm } \end{gathered}$	Non uniform	5-10 \µm
18	In single mode step index fiber, diameter of core is \…\…		Glossary I	Glossary I	2		Single Choice	Smart	5-10 \µm	Uniform	30 \– 100 \µm	Non uniform	5-10 \µm
19	In multimode step index fiber, diameter of core is \…\…		Glossary I	Glossary I	2		Single Choice	Smart	30 \– 100 \µm	Uniform	30 \– 100 \µm	Non uniform	5-10 \µm
20	Conductivity of conductor is \& hellip;\….		Glossary II	Glossary II	2		Single Choice	Smart	\σ= n e \μ	\σn=e ND \μe	\σ= n e \μ	$\&$ sigma;i=e ni(\μe+ $\& m u ; h)$	\σp=e NA \μh
21	Conductivity P type semiconductor is \…\…\…\…\…		Glossary II	Glossary II	2		Single Choice	Smart	\σp=e NA \μh	\σn=e ND \μe	\σ= n e \μ	$\underset{\substack{\text { \σi=e ni(\μe+ } \\ \& m u ; h)}}{ }$	\σp=e NA \μh
22	Conductivity of N type semiconductor is \…\…\…\…\…\…		Glossary II	Glossary II	2		Single Choice	Smart	\σn=e ND \μe	\σn=e ND \μe	\σ= n e \μ	$\begin{gathered} \hline \& \text { sigma;i=e ni(\μe+ } \\ \& \mathrm{mu} ; \mathrm{h}) \end{gathered}$	\σp=e NA \μh
23	Conductivity of intrinsic semiconductor is \…\…..		Glossary II	Glossary II	2		Single Choice	Smart	$\begin{gathered} \text { \σi=e ni(\μe+ } \\ \& m u ; h) \end{gathered}$	\σn=e ND \μe	\σ= n e \μ	$\begin{gathered} \text { \σi=e ni(\μe+ } \\ \& m u ; h) \end{gathered}$	\σp=e NA \μh
24	Condition of constructive interference in uniform thin film due to reflected light is\…...		Glossary III	Glossary III	2		Single Choice	Brilliant	$\begin{gathered} \hline 2 \& \text { micro;tcosr }=(2 \mathrm{n}+1) \\ \text { \λ } / 2 \\ \hline \end{gathered}$	2\µtcos(r+\θ) = n\λ	2\µtcos(r+\θ $)=(2 n+1) \& l a m b d a ; / 2$	$\begin{gathered} \hline 2 \& \text { micro;tcosr }=(2 \mathrm{n}+1) \\ \text { \λ } / 2 \\ \hline \end{gathered}$	2\µtcosr = n\λ
25	Condition of destructive interference in uniform thin film due to reflected light is\…..		Glossary III	Glossary III	2		Single Choice	Brilliant	$\begin{gathered} \text { 2\µtcosr = } \\ \text { n\λ } \end{gathered}$	$\begin{array}{c\|} \hline 2 \& \text { micro;tcos(r+\θ } \\ \mathrm{n}=\text { n\λ } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2 \& \text { micro;tcos(r+\θ } \\)=(2 n+1) \& l a m b d a ; / 2 \end{array}$	$\begin{array}{\|c\|} \hline \text { 2\µtcosr }=(2 \mathrm{n}+1) \\ \text { \& lambda; } / 2 \\ \hline \end{array}$	$\begin{gathered} \text { 2\µtcosr }= \\ \text { n\λ } \end{gathered}$
26	Condition of constructive interference in wedge shaped thin film due totransmitted light is \…\…\…		Glossary III	Glossary III	2		Single Choice	Brilliant	2\µtcos(r+\θ) = n\λ	2\µtcos(r+\θ) = n\λ	2\µtcos(r+\θ $)=(2 n+1) \&$ lambda;/2	$\begin{gathered} 2 \& \text { micro;tcosr }=(2 \mathrm{n}+1) \\ \text { \λ } / 2 \end{gathered}$	$\begin{gathered} \text { 2\µtcosr }= \\ \text { n\λ } \end{gathered}$
27	Condition of destructive interference in wedge shaped thin film due totransmitted light is \…...\…		Glossary III	Glossary III	2		Single Choice	Brilliant	2\µtcos(r+\θ $)=(2 n+1) \& l a m b d a ; / 2$	2\µtcos(r+\θ) $=$ n\λ	2\µtcos(r+\θ $)=(2 n+1) \&$ lambda;/2	$\begin{gathered} 2 \& \text { micro;tcosr }=(2 n+1) \\ \& \text { lambda; } / 2 \end{gathered}$	$2 \&$ micro;tcosr $=$ n\λ
28	According to Schrodinger, the energy of a particle in one dimensional box is \qquad		Glossary IV	Glossary IV	2		Single Choice	Brilliant	(n 2 h 2$) /(8 \mathrm{~mL} 2$)		(n 2 h 2$) /(8 \mathrm{~mL} 2$)	h/4\π\Δt	unity
29	According to Heisenberg, the energy of particle is \…\…\…\…		Glossary IV	Glossary IV	2		Single Choice	Brilliant	h/4\π\Δt		(n 2 h 2$) /(8 \mathrm{~mL} 2)$	h/4\π\Δt	unity
30	The total probability of finding the particle in space must be		Glossary IV	Glossary IV	2		Single Choice	Brilliant	unity		(n 2 h 2$) /(8 \mathrm{~mL} 2)$	h/4\π\Δt	unity
31	the de' Broglie wavelength(\λ) associated with a particle of mass m and kinetic energy E is		Glossary IV	Glossary IV	2		Single Choice	Brilliant			(n 2 h 2$) /(8 \mathrm{~mL} 2)$	h/4\π\Δt	unity
32	Rest mass energy of electron is\…\…\…\…		Glossary V	Glossary V	2		Single Choice	Brilliant	moc2	$\mathrm{E}=\mathrm{mc} 2$	moc2	Zero	(m- mo) c2
33	The rest mass of photon is		Glossary V	Glossary V	2		Single Choice	Brilliant	Zero	$\mathrm{E}=\mathrm{mc} 2$	moc2	Zero	(m- mo) c2
34	The relativistic kinetic energy of electron is\…\…\…..		Glossary V	Glossary V	2		Single Choice	Brilliant	(m- mo) c2	$\mathrm{E}=\mathrm{mc} 2$	moc2	Zero	(m- mo) c2
35	Total energy of moving particle \…\…\…		Glossary V	Glossary V	2		Single Choice	Brilliant	$\mathrm{E}=\mathrm{mc} 2$	$\mathrm{E}=\mathrm{mc} 2$	moc2	Zero	(m- mo) c2

