

3. 0

4. none of these

1-e. Laplace Transform of the function $F(t) = \cos h \ 3t$ is

1.
$$\frac{s}{s^2 - 9}$$

2.
$$\frac{3}{s^2 + 9}$$

3.
$$\frac{1}{s^2 + 9}$$

4.
$$\frac{s}{s^2 + 9}$$

1-f.

1

1

f(s) =	$\left[\frac{-5}{s^2+s-6}\right]$	is

CO 3

1

1

1

1

1

Inverse Laplace of the function CO 3

- 1. e^{3t} e^{2t}
 - 2. $e^{3t} + e^{2t}$
 - 3. $e^{3t} + e^{t}$
 - 4. None of these

Find the unit normal at the surface $z = x^2 + y^2$ at the point (1,2,5) is (CO4)

1. 2x + 4y2. $2x \hat{i} + 4y \hat{j}$ 3. $\frac{-2x \hat{i} - 4y \hat{j} + \hat{k}}{\sqrt{21}}$

None of these

If div $\vec{F} = 0$ every where in some region R of space, then \vec{V} is called (CO4) 1

- Irrotational
- Rotational
- Solenoidal
- 4. None of these

1-i. Find the mean proportional between given two numbers that is 64 and 49? (CO5)

- 1.45
- 2. 52
- 3. 54
- 4. 56

1-j. Find the simple interest on Rs 500 for 5 years at 10% per annum. (CO5)

- 1. Rs 500
- 2. Rs 125
- 3. Rs 250
- 4. Rs 350
- 2. Attempt all parts:-

- 2.a. Find the complementary function of the second order linear differential equation 2 $x^2y'' + xy' + y = \log x^2$ CO 1
- 2.b. Write the statement of Rabbe's test for the series $\sum u_n$ CO-2 2
- 2.c. Find Laplace transform of the function $F(t) = \frac{\cos at - \cos bt}{t}$ CO 3
 2.d. $Tat = \hat{t} + \hat{t$

(CO4)

30

- 2.d. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then show that grad $(r) = \frac{\vec{r}}{r}$
- 2.e. After 2 years, the age of Karthi is 2 times the present age of Silambu. Preethi is 8 years 2 elder than Silambu. Find the present age of Karthi, if the present age of Preethi is 23 years? (CO5)

SECTION B

3. Answer any five of the following-

3-a. Solve:
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^2 e^{-x} \cos x$$
. CO 1

3-b. Solve the differential equation $xy'' - y' + (1 - x)y = x^2e^{-x}$, given that $y = e^x$ is a part of 6 CF. CO 1

3-c.
Test the convergence of the series
$$\sum_{n=1}^{\infty} \left[(n^4+1)^{\frac{1}{4}} - n \right]$$
 CO-2

- 3-d. Test the convergence of the series, $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \frac{x^4}{4.5} + \dots$ CO-2 6 3-e. $\int_{0}^{t} e^{-4u} \sin 3u$, CO-2 6
 - Find the Laplace Transform of the function $\int_{0}^{t} \frac{e^{-4u} \sin 3u}{u} du$. CO 3

3-f.	Show that $\vec{F} = (\sin y + z)\hat{i} + (x \cos y - z)\hat{j} + (x - y)\hat{k}$, is irrotational. Also find the Scalar potential.	(CO4)6		
3-g.	 (i) The respective ratio of the present ages of a mother and daughter is 7: 1. Four years ago the respective ratio of their ages was 19:1. What will be the mother's age four years from 	6		
	now?			
	(ii) The ages of Aarzoo and Arnav are in the ratio of 11:13 respectively. After 7 years the ratio			
	of their ages will be 20:23. What is the difference in years between their ages? (CO5)			
	SECTION C	50		
4. Answer	any one of the following-			
4-a.	Solve the following differential equation by changing the independent variable	10		
	$\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} + 4x^2y = x^4.$ CO 1			
4-b.	Solve $\frac{dx}{dt} + 2x - 3y = t$, $\frac{dy}{dt} - 3x + 2y = e^{2t}$. CO 1	10		
5. Answer	any one of the following-			
5-a.	Obtain the Fourier series for the function $f(x) = \frac{1}{4}(\pi - x)^2$ in the interval $0 \le x \le 2\pi$. CO-2	10		
	Hence obtain the following relations:			
	(i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$ (ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$			
	(iii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$			
5-b.	Obtain the Fourier series for the function $f(x) = \begin{cases} 0, & -\pi \le x \le 0\\ \sin x, & 0 \le x \le \pi \end{cases}$. (CO2)	10		
	Hence show that $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{1}{2}$			
6. Answer	any one of the following-			
6	Find the Laplace transform of the rectified semi wave function defined by	10		
	$f(t) = \begin{cases} \sin \omega t & 0 \le t < \frac{\pi}{\omega} \end{cases}$			
	$\begin{bmatrix} 0 & \frac{\pi}{\omega} \le t < \frac{2\pi}{\omega} \\ . & \text{CO 3} \end{bmatrix}$			
6	Solve the following differential equation by using Laplace transformation	10		
	$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = t \ e^{-t}, \ \text{Given that } x(0) = 1, \ x'(0) = 2 $ CO 3			
7. Answer	any one of the following-			

7-a. Evaluate $\oint_C \vec{F} \cdot d\vec{r}$, by stokes theorem, where $\vec{F} = y^2\hat{i} + x^2\hat{j} - (x + z)\hat{k}$ and C is the boundary of the triangle with vert

- 7-b. Find the directional derivative of \vec{V}^2 where $\vec{V} = xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $x^2\hat{i} + zy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $x^2\hat{i} + zy^2\hat{i} + zy^2\hat{i} + zy^2\hat{j} + zy^2\hat{k}$ at the point (2,0,3) in the direction of the outwhere \vec{V} = $x^2\hat{i} + zy^2\hat{i} + zy^2\hat{i} +$
- 8-a. (i) Amit started a business by investing ₹ 30,000. Rahul joined the business after 10 some time and invested ₹ 20,000. At the end of the year, profit was divided in the ratio of 2: 1. After how many months did Rahul join the business?

(ii) The monthly income of Komal and Asha are in the ratio of 4: 3. Their monthly expenses are in the ratio of 3: 2. However both saves ₹ 600 per month. What is their total monthly income? (CO5)

8-b. (i) I was facing East from where I turned to my left and walked 12 feet then I turned 10 towards right and walked 6 feet. After that I walked 6 feet in South direction and at last walked 6 feet in the West. Then, in which direction am I standing from the original point?

(ii) Radha left her home in the morning and walked towards the East for 4 km and then took a 90^0 anticlockwise turn and walked for another 3 km to reach her school. On the same day in the morning, her brother Raman left the same house and walked towards the South for 6 km and took a right turn and walked for 8 km to reach his college. What is the shortest distance between Radha's school and Raman's college? (CO5)