Printed page: 02	Subject Code: AMTVL0114

Roll No:							

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

<u>MASTER OF TECHNOLOGY (M. Tech)</u>

(SEM: 1st Theory Examination (2020-2021)

SUBJECT NAME: MICROCHIP FABRICATION TECHNOLOGY

Time: 3 Hours Max. Marks: 70

General Instructions:

- ➤ All questions are compulsory. Answers should be brief and to the point.
- ➤ This Question paper consists of02...pages & ...8.......questions.
- ➤ It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- **Section B** Question No-3 is Long answer type -I questions with external choice carrying 4marks each. You need to attempt any five out of seven questions given.
- ➤ <u>Section C</u> Question No. 4-8 are Long answer type –II (within unit choice) questions carrying 7 marks each. You need to attempt any one part <u>a or b.</u>
- > Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- ➤ No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

1.	Ansa. b.	Numbers of atoms found inside a unit cell of a body centred cubic crystal are Wet Oxidation is preferred to grow [i] Thin oxidation layer [ii] Thick oxidation layer [iii] In the low pressure conditions [iv] In the low temperature conditions	[5x1=5] (1) (1)	CO CO1 CO2
	c.	Which lithography technique will offer higher resolution [i] Optical [ii] Ion beam [iii] x-ray [iv] electron beam	(1)	CO3
	d.	Which of the following process is not used for adding impurity? [i] Doping [ii] Diffusion [iii] Ion Implantation [iv] Metallization	(1)	CO 4
	e.	The typical thickness of poly-silicon layer is [i] In the range of 1 to 5 nm [ii] In the range of 10 to 50 nm [iii] In the range of 100 to 200 nm [iv] In the range of 500 to 600 nm	(1)	CO5
2.	An	swer all the parts-	$[5\times2=10]$	CO
	a.	Why crystal growth in {111} direction preferred in silicon?	(2)	CO 1
	b.	Discuss the significance of diffraction limited geometry in photolithography	(2)	CO 2
	c. d.	Compare Dry Etching with Chemical Wet Etching. Calculate the total amount of dopants introduced after boron pre-deposition performed at 950° C for 30 minutes in a natural ambient. Assume substrate is n-type silicon with $N_D=1.8\times10^{16} cm^{-3}$ and boron surface concentration is $C_s=1.8\times10^{20} cm^{-3}$.	(2) (2)	CO 3 CO 4
	e.	What is meant by epitaxy? What are the advantages?	(2)	CO 5

Subject Code: AMTVL0114

SECTION - B

3.	An	swer any <u>five</u> of the following-	[5x4=20]	CO
	a.	The seed crystal used in the Czochralski process is usually necked down to a small diameter (6.6mm) as a means to initiate dislocation free growth. If the critical end strength of silicon is $3x10^6$ gm/cm ² , calculate the maximum length of silicon ingot 200 mm in diameter that can be supported by such a seed. Density of Si is 2.33 gm/cm ³	(4)	CO 1
	b.	Explain the significance of Low dielectric materials. Enlist the names for few of the Low-K materials. And also explain the application associated with them	(4)	CO 2
	c.	Explain the process of Optical Lithography.	(4)	CO 3
	d.	Explain the ion stopping mechanisms in ion implantation? What are the various ways to reduce the effect of channelling in ion implantation process?	(4)	CO 4
	e.	How are the ICs classified? Give example.	(4)	CO 5
	f.	Explain why a shaped beam promises higher throughput than a Gaussian beam in ebeam lithography.	(4)	CO 3
	g.	Explain the process of rapid thermal annealing (RTA). Discuss its significance in IC processing.	(4)	CO 5
		<u>SECTION – C</u>		
4	An	swer any <u>one</u> of the following-	[5×7=35]	CO
	a.	We use the float zone process to purify a silicon ingot that contains a uniform Ga concentration of $5x10^{15}$ cm ⁻³ . One pass is made with a molten zone of 5 cm long. Over what distant is the resulting Ga concentration below $5x10^{15}$ cm ⁻³ ?	(7)	CO 1
	b.	Derive the following relation	(7)	CO 1
		$x^2 + Ax = B(t + \tau)$		
		Where x : oxide thickness after an oxidizing time 't'		
		τ : time co-ordinate shift to account for the initial oxide layer		
		B: parabolic constant, B/A: linear constant		
5.	An	swer any <u>one</u> of the following-		
	a.	Explain and discuss the significance of:	(7)	CO 2
		(i) Liquid Encapsulated Czochralski (LEC)		
		(ii) Equilibrium segregation coefficient.		
	b.	Explain the various steps of basic wafer fabrication?	(7)	CO 2
6.	An	swer any <u>one</u> of the following-		
	a.	How does the etching of the following take place?	(7)	CO 3
		(i)Silicon dioxide (ii) Silicon Nitride		
	b.	Explain in detail various steps of patterning process.	(7)	CO 3
7.	An	swer any <u>one</u> of the following-		
	a.	What is Plasma enhanced CVD systems? Explain the technique in detail.	(7)	CO 4
	b.	For Boron diffusion in silicon at 1000°C, the surface concentration is maintained at	(7)	CO 4
		10^{19} cm ⁻³ and the diffusion time is 1 hour. Find Q(t) (total no. of atoms per unit		
		area)and the gradient at $x=0$ and at a location where the dopant concentration reaches 10^{15} cm ⁻³ ?		
8.	An	swer any <u>one</u> of the following-		
	a.	Write a short note on any one of the following	(7)	CO 5
		(i) Physical Vapour Deposition (ii) Vacuum Deposition		
	b.	How monolithic ICs realized? How does integration of the following components take place?	(7)	CO 5
		(i) Resistors (ii) Capacitors		