Roll No:					
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA					
(An Autonomous Institute Affiliated to AKTU, Lucknow)					
MASTER OF COMPUTER APPLICATIONS(MCA)					
(SEM: I Theory Examination (2020-2021)					
SUBJECT DISCRETE MATHEMATICS					
Time: 3 HoursMax. Marks:100					

General Instructions:

1.

- > All questions are compulsory. Answers should be brief and to the point.
- ➤ This Question paper consists of 03 pages & 8 questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type -I question with external choice carrying 6 marks each. You need to attempt any five out of seven questions given.
- Section C -Question No. 4-8 are Long answer type II (within unit choice) questions carrying 10marks each. You need to attempt any one part <u>a or b.</u>
- > Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

Attempt <u>all</u> of the following questions.			CO
a.	If $n(A \times B) = 6$ and $A = \{1, 3\}$ then $n(B)$ is (i) . 1 (ii) . 2 (iii) . 3 (iv) . 6	(1)	
b.	The smallest set A such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$ is?	(1)	CO1
	(i). $\{2,3,5\}$ (ii). $\{1, 2, 5, 9\}$ (iii). $\{3, 5, 9\}$		
	(iv). None of the mentioned		
c.	The relation \leq is a partial order if it is	(1)	CO2
	(i). reflexive, antisymmetric and transitive		
	(ii). reflexive, symmetric		
	(iii). asymmetric, transitive		
	(iv) irreflexive and transitive		
d.	In preorder traversal of a binary tree the second step is	(1)	CO2
	(i). traverse the right subtree		
	(ii). traverse the left subtree		
	(iii). traverse right subtree and visit the root		
	(iv). visit the root		
e.	A group homomorphism is called isomorphism if the mapping is	(1)	CO3
	(i). one -one		
	(ii). onto		
	(iii). one-one onto		
	(iv). none of these		

	Sul	bject Code: AM	CA0105
f.	A set G along with a binary operation is a group if the operation satisfies	(1)	CO3
	(i). Closure property and associative property only		
	(ii). Existence of identity element only		
	(iii). Existence of inverse only		
	(iv). All the three property mentioned above		
g.	If p is true and q is false, then $p \leftrightarrow q$ is	(1)	CO4
	(i). False		
	(ii). True		
	(iii). Neither true nor false		
	(iv). none of these		
h.	$p \land q$ is true when	(1)	CO4
	(i). p is true, q is false		
	(ii). p is false, q is true		
	(iii). p is true, q is true		
	(iv). p is false, q is false		
i.	How many permutations of the letter of the word APPLE are there?	(1)	CO5
	(i). 600		
	(ii). 120		
	(iii) 240		
	(iv). 60		
j.	How many ways four boys and three girls are seated in a row so that they are	(1)	CO5
	alternate.		
	(1). 144		
	(11). 288		
	(III). 12 (iv) 256		
	(IV). 238		
Attempt all of the following questions.		[5×2=10]	CO
a.	Let F: R \rightarrow R be defined by the F(x) = 2x - 3. Find F ⁻¹ : R \rightarrow R	(2)	CO1
b.	What do you mean by simple graph? Give one example.	(2)	CO2
c.	Define Permutation group with an example.	(2)	CO3
d.	If p is true and q is false, then find the truth value of the	(2)	CO4
	$\neg (p \rightarrow \neg q)$		
	Out of source conservate and four volumes. How many words of three conservates	(2)	CO5
e.	Out of seven consonants and four vowers. How many words of three consonants two vowers can be formed?	and (2)	05
	two vowers can be formed?		
	SECTION – B		CO
Ang	swer any five of the following-	[5×6=30]	co
a.	For every natural number n prove that the proposition $P(n)$ given by	(6)	CO1
	$1^2 + 2^2 + 3^2 + \dots + n^2 = (n (n+1) (2n+1)) / 6.$		~~
b.	Let R be a relation on the set $A = \{1, 2, 3, 4\}$ defined by	(6)	CO1
	$\mathbf{R} = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$. /	
	Find (i). Reflexive closure of R (ii). Symmetric closure of R		
	(iii). Transitive closure of R		
c.	Draw a Hasse Diagrams of the Poset(S, \leq) where S = {2, 3, 6, 12, 24, 36} and x \leq	≤y (6)	CO2
	if x/y (x divides y)		

2.

3.

	d.	For a Group G, prove that G is abelian if $(ab)^2 = -a^2 b^2 \forall a b \in G$	(6)	CO3
	e.	Using logical equivalent formulas, show that $(\mathbf{R}) \cdot (-\mathbf{R} \wedge \mathbf{O}) = -\mathbf{R} \wedge -\mathbf{O}$	(6)	CO4
	f.	Solve the recurrence relation $2a_r - 5a_{r-1} + 2a_{r-2} = 0$ then find the particular solution $a_o = 0$ and $a_1 = 1$	(6)	CO5
	g.	Find N if $2P(N, 2) + 50 = P(2N, 2)$	(6)	CO5
		<u>SECTION – C</u>		
4	Ansv	wer any <u>one</u> of the following-	[5×10=50]	
	a.	For every natural number n prove that the proposition P(n) given by $1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1} n^2 = (-1)^{n-1} (n (n+1)) / 2.$	(10)	CO1
	b.	If $f:A \rightarrow B$ and $g:B \rightarrow C$ be one to one onto functions then show that <i>gof</i> is also one- one onto and $(gof)^{-1} = f^{-1}og^{-1}$	(10)	CO1
5.	Ansv	wer any <u>one</u> of the following-		
	a.	Define a Binary Tree. A Binary Tree has 9 Nodes. With its Inorder and Preorder Traversals nodes sequence are as follows: Inorder: EACKFHDBG Preorder: FAEKCDHDG	(10)	CO2
		Draw the tree.		
	b.	Define a Poset. Show that "less than or equal to" relation on a set of real number is partial ordering. Draw the Hasse Diagram of the partial ordering relation $\{(A, B)/A \subseteq B\}$ on the power set where $S = \{a, b, c\}$	(10)	CO2
6.	Ansv	wer any <u>one</u> of the following-		
	a.	Prove that the set of all rational numbers Q along with the operation of addition from a group. Show that $(R +)$ is also a group	(10)	CO3
	b.	Let G be the set of all non-zero real numbers and let a * b = ab/2	(10)	CO3
		Show that (G, *) is an abelian group.		
7.	Ans	wer any <u>one</u> of the following-		
	a.	Show that $P \lor \neg (P \land Q)$ is a tautology and $(P \land Q) \land \neg (P \lor Q)$ is a contradiction	(10)	CO4
-	b.	Prove that $(p \leftrightarrow \neg q) \land (p \leftrightarrow \neg r) \equiv \neg [p \land (q \lor r)]$ without constructing truth table	(10)	CO4
8.	Ans a.	wer any one of the following- Solve the following recurrence relation $a_{1}a_{2} = 5a_{1}a_{2} + 6a_{3} = 2$ with initial condition $a_{1} = 1$ and $a_{2} = -1$	(10)	CO5
	b.	 Write the short notes on following (i). Polya's Counting Theorem (ii). Pigeonhole Principle 	(10)	CO5