Roll No:							

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow) BACHELOR OF TECHNOLOGY (B.Tech).

(SEM: FIRST SEMESTER, THEORY EXAMINATION (2020-2021)

SUBJECT NAME: BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Time: 3 Hours Max. Marks:100

General Instructions:

1.

- ➤ All questions are compulsory. Answers should be brief and to the point.
- ➤ This Question paper consists of 03 pages & 8 questions.
- ➤ It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No- 1 is objective type questions carrying 1 mark each, Question No- 2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- ➤ <u>Section B</u> Question No-3 is Long answer type-I questions with external choice carrying 6 marks each. You need to attempt any five out of seven questions given.
- ➤ <u>Section C</u> Question No.4 to 8 are Long answer type –II (within unit choice) questions carrying 10 marks each. You need to attempt any one part <u>a or b.</u>
- > Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- ➤ No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION - A

i. An ideal Op-Amp has			Subject Code:	AEC0101	
j. Internet domain name and hostname are translated into IP address by		i.	An ideal Op-Amp has	(1)	CO ₅
j. Internet domain name and hostname are translated into IP address by			(A) Infinite input resistance (B) Infinite voltage gain		
(A) Domain name system (B) Domain name database (C) Router (D) Domain information System (5×2=10) CO 2. Answer all the parts- (2) CO1 b. An RLC circuit consisting of resistance 40 Ω capacitance 120μF and inductance 5H are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. (2) CO3 d. Explain the breakdown mechanism in a diode. (2) CO5 c. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig. 2 (6) CO1 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is 1 = 15 sin (θ+60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V₁=√3V _{po} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency of thalf wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			(C) Zero output resistance (D) All of these		
(A) Domain name system (B) Domain name database (C) Router (D) Domain information System (5×2=10) CO 2. Answer all the parts- (2) CO1 b. An RLC circuit consisting of resistance 40 Ω capacitance 120μF and inductance 5H are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. (2) CO3 d. Explain the breakdown mechanism in a diode. (2) CO5 c. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig. 2 (6) CO1 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is 1 = 15 sin (θ+60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V₁=√3V _{po} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency of thalf wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5		j.	Internet domain name and hostname are translated into IP address by	(1)	CO ₅
2. Answer all the parts- (C) Router (D) Domain information System a. Calculate the current in 6 Ω branch for the circuit shown in Figure given below- (2) CO1 2 Ω 4 Ω 4 Ω 5 6 Ω 4 Ω 1 4 Ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ü			
a. Calculate the current in 6 Ω branch for the circuit shown in Figure given below- 2 Ω 4 Ω 4 Ω 5 6 Ω b. An RLC circuit consisting of resistance 40 Ω, capacitance 120μF and inductance 5H are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. d. Explain the breakdown mechanism in a diode. c. Draw the diagrams of Inverting and Non-inverting Op-Amps. CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 how. Fig.2 Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 how. Fig.2 Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 how. Fig.2 Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 how. Fig.2 6. CO1 abso. c. The voltage applied to a circuit is v = 100 sin (0+30°) and the current flowing in the circuit is 1 = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V _L =√3V _{plh} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			·		
a. Calculate the current in 6 Ω branch for the circuit shown in Figure given below- 2 Ω 4 Ω 5 6 Ω b. An RLC circuit consisting of resistance 40 Ω, capacitance 120μF and inductance 5H are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. d. Explain the breakdown mechanism in a diode. e. Draw the diagrams of Inverting and Non-inverting Op-Amps. 20 CO3 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 shown. Fig.2 Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig.2 Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig.2 Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig.2 6. CO1 c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is 1 = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V ₁ =√3V _{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5	2.	Ansv		$[5 \times 2 = 10]$	CO
b. An RLC circuit consisting of resistance 40 Ω, capacitance 120μF and inductance 5H are connected in series with a supply of 250V. 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. (a) Explain the breakdown mechanism in a diode. (b) CO3 c. Draw the diagrams of Inverting and Non-inverting Op-Amps. (c) CO4 c. Draw the diagrams of Inverting and Non-inverting Op-Amps. (d) CO5 SECTION – B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is 1 = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V₁=√3V _{Pb} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5					
b. An RLC circuit consisting of resistance 40 Ω, capacitance 120μF and inductance 5H (2) CO2 are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. (2) CO3 d. Explain the breakdown mechanism in a diode. (2) CO4 e. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION – B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (0+30°) and the current flowing in the circuit is 1 = 15 sin (0+60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V _L =√3V _{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5		a.	Calculate the current in 6 Ω branch for the circuit shown in Figure given below-	(2)	CO1
b. An RLC circuit consisting of resistance 40 Ω, capacitance 120μF and inductance 5H (2) CO2 are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. (2) CO3 d. Explain the breakdown mechanism in a diode. (2) CO4 e. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION – B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (0+30°) and the current flowing in the circuit is 1 = 15 sin (0+60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V _L =√3V _{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			10		
b. An RLC circuit consisting of resistance 40 Ω, capacitance 120μF and inductance 5H are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. d. Explain the breakdown mechanism in a diode. e. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO3 SECTION - B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 shown. Fig.2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30⁰) and the current flowing in the circuit is I = 15 sin (θ+60⁰). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V _L =√3V _{pla} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5					
 b. An RLC circuit consisting of resistance 40 Ω, capacitance 120μF and inductance 5H are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. d. Explain the breakdown mechanism in a diode. e. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION - B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig. 2 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ+60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of 			$\frac{1}{2}$		
are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. d. Explain the breakdown mechanism in a diode. e. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION = CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 shown. Fig.2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V _L =√3V _{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			40 V - 44 V		
are connected in series with a supply of 250V, 50Hz source. Calculate quality factor c. Explain the principle of operation of a 1-phase Transformer on no-load. d. Explain the breakdown mechanism in a diode. e. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION = CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 shown. Fig.2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V _L =√3V _{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			till det medgem best kommuneste. Militaria		
 d. Explain the breakdown mechanism in a diode. e. Draw the diagrams of Inverting and Non-inverting Op-Amps. CO SECTION B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is 1 = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) 		b.		(2)	CO2
 d. Explain the breakdown mechanism in a diode. e. Draw the diagrams of Inverting and Non-inverting Op-Amps. CO SECTION B CO 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is 1 = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) 		c.	Explain the principle of operation of a 1-phase Transformer on no-load.	(2)	CO3
 e. Draw the diagrams of Inverting and Non-inverting Op-Amps. (2) CO5 SECTION – B Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig.2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 					
SECTION – B 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig. 2 (6) CO1 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ+60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V _L =√3V _{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			•		
 3. Answer any five of the following- a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig.2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 		•	214 the daughting of myelling of 12mps.	(=)	
 a. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig.2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 			<u>SECTION – B</u>		CO
 a. Find the equivalent resistance between x-y using star-delta transformation in the Fig. 2 (6) CO1 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 	3	Ansı	ver any five of the following.	[5×6-30]	
 shown. Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ+60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 	٠.		-		CO1
 Fig. 2 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 		u.		(0)	COI
 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 					
 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 			A SH WES		
 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 					
 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 			20		
 b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition also. c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 			John Hing		
 c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 			Y		
 c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 		_	D	(5)	~~1
 c. The voltage applied to a circuit is v = 100 sin (θ+30°) and the current flowing in the circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 		b.	**	(6)	CO1
 circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 			also.		
 circuit is I = 15 sin (θ +60°). Determine the impedance, resistance, reactance, power and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 		C	The voltage applied to a circuit is $y = 100 \sin (0.430^{\circ})$ and the current flowing in the	(6)	CO2
 and the power factor of the circuit. d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 		С.		(0)	CO2
 d. What are the necessities and advantages of using 3-phase system? Derive V_L=√3V_{ph} (6) CO2 for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 					
for star connection. e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5		J	·	(6)	CO2
 e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 		u.		(0)	COZ
load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			for star connection.		
load. Find the efficiency of the transformer if the core and copper losses at full load are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5		e.	A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full	(6)	CO3
are 900W and 1200W respectively. f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5				(0)	
 f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5 			•		
factor and efficiency for half wave rectifier circuit. g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5			······································		
g. Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) CO5		f.	Describe a half wave rectifier using a junction diode. Derive the expressions for ripple	(6)	CO4
		g.	Draw the circuit diagram of an Integrator using Op-Amp and find the expression of	(6)	CO5
			output voltage.		

SECTION - C

4 Answer any <u>one</u> of the following-

 $[5 \times 10 = 50]$ CO

a. Find the Thevenin equivalent model across a-b in Fig.3.

(10) CO1

b. Find the node voltages at node X and Y in the circuit of Fig.4. using Nodal Analysis.

(10) CO1

5. Answer any one of the following-

- a. A series RLC circuit consisting of resistance 20Ω , capacitance $150 \mu F$ and inductance (10) CO2 2H are connected with 250V, 50Hz source. Calculate:
 - (i) Power factor
 - (ii) The frequency of supply to be adjusted to make the power factor unity.
 - (iii) Net reactance and impedance.
- b. Derive the expression for power in a three-phase star connection. A balanced star connected load of $(8+j6) \Omega$ per phase is connected to a balanced 3-phase, 400V supply. Find the line current, power factor and power.

6. Answer any one of the following-

- a. Develop the equivalent circuit of a single-phase transformer on no-load and on-load conditions. (10)
- **b.** Draw a one-line diagram of a Power System from generating station to end user. (10) CO3 Mention the different voltage levels.

7. Answer any one of the following-

- a. State and explain the characteristics of a Zener diode. How it can be used as a voltage regulator? (10)
- b. Clearly explain the difference in principle of operation between LED and LCD. Why are LCDs preferred for displays in the pocket calculators?

8. Answer any one of the following-

- a. In a Non-inverting Op-Amp, the value of gain is 1.5. If the input resistance is $4k\Omega$, (10) CO5 what should be the feedback resistance R_f to have desired gain?
- **b.** Find the gain of the amplifier shown in Fig.5. Open loop gain is 10^5 . (10)

