Subject Code: ACSBS0101

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY ,GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

BACHELOR OF TECHNOLOGY (B.Tech)

(SEM: Ist Theory Examination (2020-2021)

SUBJECT NAME: PHYSICS FOR COMPUTING SCIENCE

Time: 3 Hours

Max. Marks:100

General Instructions:

1.

2.

- > All questions are compulsory. Answers should be brief and to the point.
- > This Question paper consists of 02 pages & 8questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No- 1 is very short answer type carrying 1 mark each, Question No- 2 is short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type -I questions with external choice carrying 6 marks each. You need to attempt any five out of seven questions given.
- Section C Question No. 4-8 are Long answer type –II (within unit choice) questions carrying 10 marks each. You need to attempt any one part <u>a or b.</u>
- Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

Attempt <u>all parts</u> .		[10×1=10]	CO
a.	What is periodic motion?	(1)	CO1
b.	Write continuity equation for current densities.	(1)	CO1
c.	Why the centre of Newton's rings is dark?	(1)	CO2
d.	What is polarized light?	(1)	CO2
e.	Name any one application of uncertainty principle.	(1)	CO3
f.	What are matter waves?	(1)	CO3
g.	What is the value of packing factor for FCC crystal?	(1)	CO4
h.	What are the current carriers in semiconductor?	(1)	CO4
i.	Define meta-stable state.	(1)	CO5
ј.	What is the principle of optical fiber communication?	(1)	CO5
Attempt <u>all</u> parts.		[5×2=10]	CO
a.	Write Maxwell's equations in differential form.	(2)	CO1
b.	Why Newton's rings are circular?	(2)	CO2
c.	Calculate the de-Broglie wavelength of an electron which has been accelerated from rest through a potential difference of 100 volt.	(2)	CO3
d.	What are Miller indices? How are they calculated?	(2)	CO4
e.	Define first law of thermodynamics.	(2)	CO5

SECTION – B 3. Answer any five of the following-[5×6=30] Drive an expression for energy decay in damped harmonic oscillator. **CO1** a. (6) Discus the principle of superposition and also derive an expression for **CO2** b. (6) resultant intensities. Derive the Schrodinger time independent wave equations. **CO3** c. (6) Calculate the conductivity of pure silicon at room temperature when the d. (6) **CO4** concentration of carrier is $1.5 \times 10^{16} \text{m}^{-3}$ and the mobility of electrons and holes are 0.12 and 0.05 m^2/V -s respectively at room temperature. Distinguish absorption, spontaneous emission and stimulated emission. **CO5** (6) e. f. In p-type semiconductor, the Fermi level is 0.3 eV above the valence band at (6) **CO4** temperature 300 K. Find the position of new Fermi level at temperature 400 K. Newton's rings are observed in reflected light of wavelength 5890 Å. The **CO2** (6) g. radius of the convex surface of the lens is 100 cm. A liquid is put between curved surface of lens and plate. The diameter of 10th ring is 4.2 mm. Calculate the refractive index of liquid when ring is dark. **SECTION - C** 4 Answer any one of the following-[5×10=50] CO Discuss the characteristics of simple harmonic motion. a. (10)**CO1** Derive Maxwell's equation in non-conducting medium. **CO1** b. (10)5. Answer any one of the following-Explain the formation of Newton's ring. Prove that in reflected light the (10)**CO2** a. diameter of dark rings is proportional to the square root of natural numbers. **CO2** b. Discuss the phenomenon of Fraunhofer diffraction at single slit and find (10)relative intensities of successive maxima. 6. Answer any one of the following-An electron is bound in a one-dimensional potential box of width 2.5×10^{-10} m. (10) **CO3** a. Assuming the height of the box to be infinite, calculate the lowest two permitted energy values of the electron. b. A particle is in motion along a line x = 0 and x = L with zero potential energy. (10)**CO3** At point for which x < 0 and x > L, the potential energy is infinite. Solving Schrodinger equation, obtain energy eigen values & normalized wave function for the particle. 7. Answer any one of the following-Classify the solids on the basis of band theory? a. (10)**CO4** b. Show that Fermi energy level in intrinsic semiconductor lies half way (10)**CO4** between the top of valence band and bottom of conduction band. 8. Answer any one of the following-Describe the construction and working of Ruby Laser with neat diagram. (10)**CO5** a. What are Einstein's A and B coefficient? Establish a relation between them. **CO5** b. (10)