Subject Code: ABT0101

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech.

(SEM: First THEORY EXAMINATION (2020-2021)

Subject Name: Elementary Mathematics

Time: 3 Hours

Max. Marks:100

General Instructions:

1.

> All questions are compulsory. Answers should be brief and to the point.

> This Question paper consists of 02 pages & 8 questions.

> It comprises of three Sections, A, B, and C. You are to attempt all the sections.

Section A Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.

Section B - Question No-3 is Long answer type -I questions with external choice carrying 6 marks each. You need to attempt any five out of seven questions given.

Section C -Question No. 4-8 are Long answer type –II (within unit choice) questions carrying 10marks each. You need to attempt any one part <u>*a*</u> or <u>*b*</u>.

> Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.

> No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

Answer all the parts-		[10×1=10]	CO
a.	The roots of quadratic equation $9x^2 + 16 = 0$ are	(1)	CO 1
	(a) $\frac{4}{2}, -\frac{4}{2}$		
	(b) $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$		
	$(0) \frac{1}{3} i, -\frac{1}{3} i$		
	(c) $\frac{3}{4}, -\frac{3}{4}$		
	(d) $\frac{3}{4}i, -\frac{3}{4}i$		
b.	The solution set of the inequality $24x < 100$, where x is a natural number, is	(1)	CO 1
	(a) $\{0,1,2,3\}$		
	(b) $\{0,1,2,3,4\}$		
	(c) $\{1,2,3,4\}$		
	(d) $\{1,2,3\}$		
c.	The domain of the function $\frac{1}{\sqrt{x-2}}$ is $[2,\infty)$. (T/F)	(1)	CO 2
d.	The value of $\lim_{x\to 2} \frac{x^2-4}{x^2}$ is	(1)	CO 2
e.	The value of $\int \sec x + \tan x dx$ is	(1)	CO 3
f.	The value of $\int_0^1 \frac{1}{1-x^2} dx$ is $\frac{\pi}{2}$. (T/F)	(1)	CO 3
g.	$(1 - 4y)^3 (d^2y)^2$	(1)	CO 4
8.	The degree of the differential equation $\left(1 + \frac{dy}{dx}\right) = \left(\frac{dy}{dx^2}\right)$ is	(-)	001
	(a) 1		
	(b) 2		
	(c) 3		
	(d) 4 $dx = dy$	(-)	~~ ·
h.	Solution of differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is $xy = c$. (T/F)	(1)	CO 4
	λ y		

	i.	A person bought an article for Rs. 240. For how much should he sell it so as to gain 20% ?	(1)	CO 5
	j.	Find the missing term in the series 55 60 67 78 91 108	(1)	CO 5
2.	Ans	swer all the parts-	[5×2=10]	CO
	a.	Solve $x^2 - 5ix - 6 = 0$.	(2)	CO 1
	b.	Find the derivative of $y = x^2 sinx + \cos^{-1} x$ with respect to x.	(2)	CO 2
	c.	Find $\int x \cos x dx$.	(2)	CO 3
	d.	For a differential equation representing the family of curves $y = Asinx$, by eliminating the arbitrary constant.	(2)	CO 4
	e.	What percentage is equivalent to $\frac{5}{8}$?	(2)	CO 5
2		$\frac{\text{SECTION} - B}{\text{SECTION}}$	[5. (20]	CO
3.	Ans	Solve the inequality $E_{\alpha} = 10$ graphically	[5×0=30]	CO 1
	а. ь	Solve the inequality $5x + 2y \le 10$ graphically.	(6)	
	D.	Compute the derivative of $f(x) = stax$ with respect to x by first principle.	(0)	CO_{2}
	c.	Find $\int \frac{dx}{(x-2)(x-3)} dx$.	(0)	03
	d.	Solve the differential equation $(1 + x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$.	(6)	CO 4
	e.	The average of 15 results is 60. If the average of first eight results is 58 and that of last eight is 61, find the eighth result.	(6)	CO 5
	f.	If $y = x^x$, then prove that $\frac{d^2y}{dx^2} - \frac{1}{y}\left(\frac{dy}{dx}\right)^2 - \frac{y}{x} = 0.$	(6)	CO 2
	g.	Find $\int_0^1 \frac{\tan^{-1} x}{(1+x^2)} dx$.	(6)	CO 3
		$\underline{SECTION - C}$		CO
1	And	wer any one of the following	[5~10-50]	
4	a.	Solve the system of inequalities graphically $x + y > 6$; $2x - y < 0$.	(10)	CO 1
	b.	Solve the inequality $\frac{x}{4} < \frac{5x-2}{3} - \frac{7x-3}{5}$ and show the graph of the solution on	(10)	CO 1
_		number line.		
5.	Ans a.	Swer any one of the following- Show that the function $f(x) = x - 3 , x \in R$, is continuous but not	(10)	CO 2
		differentiable at $x = 3$.		
	b.	Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\tan^{-1}\sqrt{2}$.	(10)	CO 2
6.	Ans	swer any one of the following-		
	a.	Evaluate $\int_{0}^{\pi/2} log(sinx) dx$.	(10)	CO 3
	b.	Find the area of the region included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ where $a > 0$	(10)	CO 3
7	And	$x = 4uy$, where $u \ge 0$.		
/.	Ans a.	Find the general solution of the differential equation $tany sec^2 x dx + tanx sec^2 y dy = 0$	(10)	CO 4
	b.	Find the general solution of the differential equation $x\frac{dy}{dx} + 2y = x^2 \log x$.	(10)	CO 4
8.	An	swer any one of the following-		
	a.	In a certain code, LONDON is coded as 24-30-28-8-30-28. How will FRANCE be coded?	(10)	CO 5
	b.	Find the value of $\frac{1}{2 + \frac{1}{2 + \frac{1}{2 - \frac{1}{2}}}}$.	(10)	CO 5