NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
B. Tech.
(SEM: FIRST SEMESTER THEORY EXAMINATION (2020-2021))
Subject Name: Engineering Mathematics-I
Time: 3 Hours
Max. Marks:100

General Instructions:

$>$ All questions are compulsory. Answers should be brief and to the point.
$>$ This Question paper consists of 02 pages \& 8 questions.
$>$ It comprises of three Sections, A, B, and C. You are to attempt all the sections.
$>$ Section A -Question No-1 is objective type questions carrying 1 mark each, Question No- 2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
$>$ Section B-Question No-3 is Long answer type -I questions with external choice carrying 6 marks each. You need to attempt any five out of seven questions given.
$>$ Section C-Question No. 4-8 are Long answer type -II (within unit choice) questions carrying 10 marks each. You need to attempt any one part a or b.
$>$ Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
$>$ No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION - A

1. Attempt all the parts.
a. A is a singular matrix of order 3 with eigen values 2 and 3 . The third eigen value is
(a) 1
(b) 0
(c) 4
(d) -1
b. The rank of the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1\end{array}\right]$ is
(a) 0
(b) 1
(c) 2
(d) 3
c. If $u=\frac{x^{2}}{a}+\frac{y^{2}}{b}-7$ then $\frac{\partial u}{\partial x}$ is \qquad
d. If $u=x^{2}$ and $x=t^{3}$ then $\frac{d u}{d t}$ is \qquad
e. If $x=r \cos \varnothing$ and $y=r \sin \varnothing$ then $\frac{\partial(x, y)}{\partial(r, \varnothing)}$ is \qquad
f. The function $z=y^{2}+x^{2} y+x^{4}$ has a minimum at $(0,0)$. (T/F)
g. The value of the double integral $\int_{x=0}^{3} \int_{y=0}^{1}\left(x^{2}+3 y^{2}\right) d y d x$ is 12 . (T/F)
h. The value of $\int_{0}^{\infty} e^{-x^{2}} d x$ is $\sqrt{\pi}$. (T/F)
i. The value of $81 \times 81+68 \times 68-2 \times 81 \times 68$ is \qquad
j. Insert the missing number: $11,13,17,19,23,29,31,37,41,(\ldots \ldots$.$) .$
$[5 \times 2=10]$
CO2
CO2
CO3
CO3
CO4
CO4
CO5
2. Attempt all the parts.
a. Find a and b such that $A=\left[\begin{array}{ll}a & 4 \\ 1 & b\end{array}\right]$ has 3 and -2 as eigen values.
(2)

CO5
b. Find the $n^{\text {th }}$ derivative of $y=\sin (a x+b)$.
c. The radius of a sphere is found to be 10 meter with a possible error of 0.02 meter.

What is the relative error in calculating the volume of sphere?
d. Prove that Beta function is symmetric.

CO 4
e. If 50% of $(x-y)$ is 30% of $(x+y)$ then what percent of x is y ?

SECTION - B

3. Answer any five of the following-

a. Show that the system of equations

$$
\left.\begin{array}{l}
3 x+4 y+5 z=\alpha \tag{6}\\
4 x+5 y+6 z=\beta \\
5 x+6 y+7 z=\gamma
\end{array}\right\}
$$

is consistent only if α, β and γ are in arithmetic progression.
b. Trace the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$.
c. Prove that $\frac{1}{(1-x)}=\frac{1}{3}+\frac{(x+2)}{3^{2}}+\frac{(x+2)^{2}}{3^{3}}+\frac{(x+2)^{3}}{3^{4}}+\cdots \ldots$.
d. Change the order of integration and hence evaluate $\int_{0}^{a} \int_{x^{2} / a}^{2 a-x} x y d y d x$.

CO3
e. Using the transformation $x+y=u$ and $y=u v$, show that $\int_{0}^{1} \int_{0}^{1-x} e^{\left(\frac{y}{x+y}\right)} d y d x=$ $\frac{1}{2}(e-1)$.
f. The selling price of 20 articles is equal to the cost price of 25 articles. Find the profit percent.
g. If the word LEADER is coded as 20-13-9-12-13-26, how would you write LIGHT?

SECTION - C

4 Answer any one of the following-
a. State Cayley-Hamilton theorem. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find A^{-1}.
b. Find eigen values and corresponding eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 10 & 5 \tag{10}\\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right]
$$

5. Answer any one of the following-
a. If $y=x^{n} \log x$, prove that (i) $y_{n+1}=\frac{n!}{x} \quad$ (ii) $x^{2} y_{p+2}+(2 p-2 n+1) x y_{p+1}+$ $(p-n)^{2} y_{p}=0$.
b. State and prove Euler's theorem for homogeneous function. Also prove that if $u=\tan ^{-1}\left[\frac{x^{3}+y^{3}}{x-y}\right]$ then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
6. Answer any one of the following-
a. Expand x^{y} in powers of $(x-1)$ and $(y-1)$ upto the third degree terms.
b. Find a point on the paraboloid $z=x^{2}+y^{2}$ nearest to the point $(3,-6,4)$.
a. Prove by the method of double integration that the area lying between the parabolas
7. Answer any one of the following$y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
b. Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ by using Dirichlet's theorem.
8. Answer any one of the following-
a. A batsman makes a score of 87 runs in the $17^{\text {th }}$ inning and thus increases his average by 3 . Find his average after $17^{\text {th }}$ inning.
b. If three numbers are added in pairs, the sums equal 10,19 and 21 . Find the numbers.
