

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology Computer Science & Engineering

First Year

(Effective from the Session: 2022-23)

Bachelor of Technology Computer Science & Engineering <u>Evaluation Scheme</u> SEMESTER-I

SI.	Subject	Subject	P	erio	ds	Evaluation Scheme		End Semester		Total	Credit		
No.	Codes			P	СТ	TA	TOTAL	PS	ТЕ	PE			
		3 WEEKS COM	PUL	SOR	Y IN	DUC	ΓΙΟΝ	PROGRA	Μ				
1	AAS0103	Engineering Mathematics-I	3	1	0	30	20	50		100		150	4
2	AEC0101	Basic Electrical and Electronics Engineering.	3	1	0	30	20	50		100		150	4
3	ACSE0101	Problem Solving using Python	3	0	0	30	20	50		100		150	3
4	AASL0101	Professional Communication	2	0	0	30	20	50		100		150	2
5	AEC0151	Basic Electrical and Electronics Engineering Lab	0	0	2				25		25	50	1
6	ACSE0151	Problem Solving using Python Lab	0	0	2				25		25	50	1
7	AASL0151	Professional Communication Lab	0	0	2				25		25	50	1
8	AME0151	Digital Manufacturing Practices	0	0	3				25		25	50	1.5
9		MOOCs (For B.Tech. Hons. Degree)											
		TOTAL										800	17.5

List of MOOCs (Coursera) Based Recommended Courses for First Year (Semester-I) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	AMC0001	Introduction to Artificial Intelligence (AI)	IBM	8	0.5
2	AMC0004	Python Basics	University of Michigan	36	3

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Bachelor of Technology Computer Science & Engineering <u>Evaluation Scheme</u> SEMESTER-II

SI.	Subject	Subject	P	Periods Evaluation Scheme		End Semester		Total	Credit				
No.	Codes	es	L	Т	Р	СТ	ТА	TOTAL	PS	TE	PE		ortuit
1	AAS0203	Engineering Mathematics-II	3	1	0	30	20	50		100		150	4
2	ACSE0203	Design Thinking-I	3	1	0	30	20	50		100		150	4
3	AAS0201A	Engineering Physics	3	1	0	30	20	50		100		150	4
4	ACSE0202	Problem Solving using Advanced Python	3	1	0	30	20	50		100		150	4
5		Foreign Language*	2	0	0	30	20	50		50		100	2
6	AAS0251A	Engineering Physics Lab	0	0	2				25		25	50	1
7	ACSE0252	Problem Solving using Advanced Python Lab	0	0	2				25		25	50	1
8	AME0252	Engineering Graphics & Solid Modelling	0	0	3				25		25	50	1.5
		MOOCs (For B.Tech. Hons.											
		Degree)											
		TOTAL										850	21.5

*Foreign Language :

- 1. AASL0202 French
- 2. AASL0203 German
- 3. AASL0204 Japanese

List of MOOCs (Coursera) Based Recommended Courses for First Year (Semester-II) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	AMC0012	Human Centered Design for Inclusive Innovation	University of Toronto	14	1
2	AMC0013	Python for Data Science, AI & Development	IBM	17	1

PLEASE NOTE:-

• Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

AICTE Guidelines in Model Curriculum:

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

- 1. For 6 to 12 Hours =0.5 Credit
- 2. For 13 to18 =1 Credit
- 3. For 19 to 24 =1.5 Credit
- 4. For 25 to 30 =2 Credit
- 5. For 31 to 35 =2.5 Credit
- 6. For 36 to 41 = 3 Credit
- 7. For 42 to 47 =3.5 Credit
- 8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

- i. If he / she secures 7.50 as above CGPA.
- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits.

<u> </u>		B. TECH FIRST	T			
Course Code AAS0103				Р	Credit	
Course Tit	tle	ENGINEERING MATHEMATICS-I3	1	0	4	
linear algebr students with	a, differ 1 standar	The objective of this course is to familiarize the graduate engine ential calculus-I, differential calculus-II and multivariable calculus d concepts and tools from intermediate to advanced level that with of mathematics and applications that they would find useful in their of	is. It a Il enat	aims ole th	to equip th	
Pre-requis	ites:Kn	owledge of Mathematics upto 12 th standard.				
		Course Contents / Syllabus				
UNIT-I	Matric	es			8 hour	
Types of Ma	trices: S	ymmetric, Skew-symmetric and Orthogonal Matrices; Complex Ma	atrices.	,Inve	rse and Ran	
of matrix usi	ng eleme	ntary transformations, System of linear equations, Characteristic equ	uation,	Cay	ley-Hamilto	
Theorem and		cation, Eigen values and eigenvectors; Diagonalisation of a Matrix.				
UNIT-II		ntial Calculus-I			8 hour	
		ation (nth order derivatives), Leibnitz theorem and its applica Polar co-ordinates. Partial derivatives, Total derivative, Euler's Th				
UNIT-III	Differe	ntial Calculus-II		8 hour		
Taylor and	Maclaurii	n's theorems for a function of one and two variables,Jac	obians	s, Aj	pproximatio	
oferrors.Max	ima and	Minima offunctions of several variables, Lagrange Method of Multi	pliers.			
UNIT-IV	Multiv	ariable Calculus			10 hour	
Multiple inte	<u>, •</u> 1	Double integral, Triple integral, Change of order of integration,				
	-					
-	riables, A	Application: Areas and volumes, Centre of mass and centre of gravit	•			
(Constant and	uriables, A d variable	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop	•	, Diri	chlet's	
(Constant and integral and i	riables, A d variable	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop ations.	•	, Diri		
(Constant and integral and i	riables, 2 d variable its applica Aptitue	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop ations. de-I	perties		8 hour	
(Constant and integral and i	riables, 2 d variable its applica Aptitue	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop ations.	perties		8 hour	
(Constant and integral and i UNIT-V Simplificatio	tcome:	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop ations. de-I entage , Profit, loss & discount , Average, Number & Series, Coding After completion of this course students are able to:	perties		8 hour	
(Constant and integral and i UNIT-V Simplificatio	tcome:	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop ations. de-I entage , Profit, loss & discount , Average, Number & Series, Coding	perties		8 hour	
(Constant and integral and i UNIT-V Simplificatio Course ou	tcome: Apply Apply	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop ations. de-I entage , Profit, loss & discount , Average, Number & Series, Coding After completion of this course students are able to: the concept of matrices to solve linear simultaneous equations	g & de K3 K3		8 hour	
(Constant and integral and i UNIT-V Simplificatio Course ou CO 1	Apply differe tcome: Apply Apply	Application: Areas and volumes, Centre of mass and centre of gravit e densities),Improper integrals, Beta & Gama function and their prop ations. de-I entage , Profit, loss & discount , Average, Number & Series, Coding After completion of this course students are able to: the concept of matrices to solve linear simultaneous equations the concept of successive differentiation and partial	g & de		8 hour	

CO 5	Solve the problems of Profit, Loss, Number & Series, Coding & decoding. K ₃						
Text books							
(1) B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd							
(2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.							
(3) R K. Jain & S R K. Iyenger , Advance Engineering Mathematics, Narosa Publishing House .							
Reference							
	ig, Advance Engineering Mathematics, John Wiley & Sons.						
•	D'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.						
	D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson.						
	Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole.						
	n T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.						
	e C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.						
	nakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India						
	rvices Pvt. Ltd						
	l Engineering Mathematics. Chandrika Prasad, ReenaGarg.						
	ng Mathemathics – I. ReenaGarg.						
	ive Aptitude by R.S. Aggrawal.						
Link:	1 5 55						
Unit 1	https://www.youtube.com/watch?v=kcL5WWJjmIU						
	https://www.youtube.com/watch?v=VTHz4gjzsKI						
	https://youtu.be/56dEt9EOZ M						
	https://youtube.com/watch?v=njDiwB43w80						
	https://www.youtube.com/watch?v=N33SOw1A5fo						
	https://www.youtube.com/watch?v=yLi8RxqfowA						
	www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf						
	http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf						
	https://youtu.be/41Y38WjHbtE						
	https://www.youtube.com/watch?v=4jcvZmMK_28						
	https://www.youtube.com/watch?v=G4N8vJpf7hM						
	https://www.youtube.com/watch?v=r5dIXpssvrA						
	https://youtu.be/ZX5YnDMzwbs						
	http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf						
	https://www.youtube.com/watch?v=iKQESPLDnnI						
	https://math.okstate.edu/people/binegar/3013-S99/3013-l16.pdf						
	https://www.youtube.com/watch?v=kGdezES-bDU						
Unit 2	https://www.youtube.com/watch?v=tQxk5IX9S_8&list=PLbu_fGT0MPstS3DTIyqkUecSW_7axd						
	xKe						
	https://www.youtube.com/watch?v=U5sGFf0DjLs&t=34s						
	https://www.youtube.com/watch?v=TCPPvRfHtXw						
	https://www.youtube.com/watch?v=PkuPGKSacu0&list=PL2FUpm_Ld1Q3H00wVFuwjWOo1gt						

	MXk1eb
	https://www.youtube.com/watch?v=QeWrQ9Fz3Wo&t=22s
	https://www.youtube.com/watch?v=5dFrWCE6bHg
	https://www.youtube.com/watch?v=WX6O9TiFYsA&t=110s
	https://www.youtube.com/watch?v=GII1ssdR2cg&list=PLhSp9OSVmeyK2yt8hdoo3Qze3O0Y67
	qaY
Unit 3	https://www.youtube.com/watch?v=6tQTRlbkbc8
	https://www.youtube.com/watch?v=McT-UsFx1Es
	https://www.youtube.com/watch?v=_1TNtFqiFQo
	https://www.youtube.com/watch?v=X6kp2o3mGtA
	https://www.youtube.com/watch?v=btLWNJdHzSQ
	https://www.youtube.com/watch?v=jiEaKYI0ATY
	https://www.youtube.com/watch?v=r6lDwJZmfGA
	https://www.youtube.com/watch?v=Jk9xMY4mPH8
	https://www.youtube.com/watch?v=fqq_UR4zhfI
	https://www.youtube.com/watch?v=G0V_yp0jz5c
	https://www.youtube.com/watch?v=9-tir2V3vYY
	https://www.youtube.com/watch?v=jGwA4hknYp4
Unit 4	https://www.youtube.com/watch?v=3BbrC9JcjOU
	https://www.youtube.com/watch?v=-DduB46CoZY
	https://www.youtube.com/watch?v=VvKAuFBJLs0
	https://www.youtube.com/watch?v=4rc3w1sGoNU
	https://www.youtube.com/watch?v=X6kp2o3mGtA&t=1003s
	https://www.youtube.com/watch?v=wtY5fx6VMGQ&t=1151s
	https://www.youtube.com/watch?v=-I3HUeHi1Ys&t=1933s
	https://www.youtube.com/watch?v=kfv9h3c46CI
	https://www.youtube.com/watch?v=9_m36W3cK74
	https://www.youtube.com/watch?v=HQM7XMd5QQo
	- https://www.GovernmentAdda.com
Unit 5	https://www.GovernmentAdda.com

		B.TECH FIRST YEAR		
Course Code	e	AEC0101	LTP	Credits
Course Title		Basic Electrical and Electronics Engineering	310	4
Course obj	ject	ive:		
	2. 3.	To provide the basics of DC and AC analysis of (a phase) electrical circuits. To study the basics of transformer and calculate its eff To impart elementary knowledge of Power System and Energy Consumption. To provide the knowledge of Diode, Display devices, O its application.	iciency. Compone	nts, Earthing
Pre-requis	ites	Basic knowledge of 12th Physics and Mathematics		
		Course Contents / Syllabus		
UNIT-I	D.0	C CIRCUIT ANALYSIS AND NETWORK THEOREM	1S	10
	cur anc anc the	ncept of network, Active and passive elements, voltagerent sources, concept of linearity and linear network, und bilateral elements, source transformation, Kirchoff's Law a nodal methods of analysis, star delta transformation, n orems: Superposition theorem, Thevenin's theorem, Neorem, maximum power transfer theorem.	ilateral v: loop etwork	
UNIT-II	ST	EADY STATE ANALYSIS OF AC CIRCUIT		10
	pha ana typ	rgle phase AC circuit : AC fundamentals, concept of phasor representation of sinusoidally varying voltage and callysis of series and parallel RLC circuits, j-notation, Dies of power, power factor, resonance in series and products.	eurrent, fferent	
		ree phase AC circuit: Advantages of three phase tage and current relations in star and delta connections.	circuit,	
UNIT-III	PO Sin	NGLE PHASE TRANSFORMER AND ELEMENT WER SYSTEM agle Phase Transformer: Principle of operation, constr IF equation, equivalent circuit, losses and efficiency.		09
	Pov Un	roduction to Elements of Power System: General lay wer system, Components of Distribution system: Switcl it (SFU), MCB, ELCB, MCCB, Importance of Ea ementary calculations for energy consumption, Battery Bac	h Fuse urthing,	

	V SEMICONDUCTOR DIODE AND THEIR APPLICATIONS	10
UNIT-I	•	10
	Introduction of Semiconductors: Intrinsic and Extrinsic, P-N	
	Junction Diode: Depletion layer, V-I characteristics, Half and Full Wave rectification, Clippers, Breakdown Mechanism: Zener and	
	Avalanche, Zener Diode as Shunt Regulator.	
	Avaianche, Zeher Diode as Shuht Regulator.	
	Display Devices	
	Liquid Crystal Display (LCD), Light Emitting Diode (LED),	
	Organic-Light Emitting Diode (O-LED), 7- segment display.	
UNIT-V	OPERATIONAL AMPLIFIERS	09
01111	Introduction, Op-Amp Basic, Practical Op-Amp Circuits	
	(Inverting Amplifier, Noninverting Amplifier, Summing	
	Amplifier, Integrator, Differentiator).	
	Electronic Instrumentation	
	Digital Multimeter (DMM), Types of sensor, Introduction to IoT	
	and its application.	
Course	outcome: After successful completion of this course students wi	ll ha abla ta
Course	Juccome. After successful completion of this course students wi	II DE ADIE IU
CO 1 A	Apply the principle of KVL/KCL and network theorems for	
	nalysis of D.C circuit.	
	Analyze the steady state behavior of single phase and three phase	
	AC electrical circuits.	
CO 3 I	llustrate and analyze the working principles of a single phase	
	ransformer, efficiency, and components of Power system, Earthing,	
а	nd energy calculation.	
	Explain the construction, working principle, and application of PN	
	unction diode, Zener diode and Display devices.	
	Explain the concept of Op-Amp, Digital multimeter, Sensors, IoT and	
	ts applications.	
	oks (Atleast3)	
	P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw 1	Hill.
	C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.	
	L. Wadhwa, Basic Electrical Engineering, Pearson Education	
	B. Gupta, Basic Electrical Engineering, Kataria& Sons	
	bert L. Boylestad / Louis Nashelsky" Electronic Devices and Circuit Theory	", Latest Edition,
	arson Education.	
6. H	S Kalsi, "Electronic Instrumentation", Latest Edition, TMH Publication.	
Referen	ce Books (Atleast 3)	
	Hughes, "Electrical and Electronics Technology", Pearson, 2010.	
	S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Pr	ress.
	D. Toro, "Electrical Engineering Fundamentals", Pearson India.	angitas Drazz
4. Da	vid A. Bell, "Electronic Devices and Circuits", Latest Edition, Oxford Unive	ersity Press.

David A. Bell, *Electronic Devices and Circuits*, Latest Edition, Oxford University Pres
 Jacob Millman, C.C. Halkias, Stayabratajit, "*Electronic Devices and Circuits*", Latest Edition, TMH.

NIDTEI	Nout	who/Fooulty Video Links
NPIEL	/ Y OUI	tube/ Faculty Video Link:
Unit 1	1.	https://youtu.be/FjaJEo7knF4
	2.	https://youtu.be/UsLbB5k9iuY
	3.	https://youtu.be/1QfNg965OyE
	4.	https://youtu.be/wWihXHCOmUc
Unit 2	5.	https://youtu.be/ulGKCeOoR88
	1.	https://youtu.be/YLGrugmDvc0
	2.	https://youtu.be/0f7YkVorOmY
	3.	https://youtu.be/LM2G3cunKp4
	6.	https://youtu.be/85464NnKOq4
Unit 3	1.	https://youtu.be/GgckE4H5AJE
	2.	https://youtu.be/OKkOif2JYRE
	3.	https://youtu.be/qSyUFp3Qk2I
	4.	https://youtu.be/GROtUE6ILc4
	7.	https://youtu.be/k_FqhE0uNEU
Unit 4	1.	https://youtu.be/EdUAecpYVWQ?list=PLwjK_iyK4LLBj2yTYPYKFKdF6kIg0
		ccP2
	2.	https://youtu.be/MZPeRlst8rQ
	3.	https://youtu.be/qQucInufX-s
	4.	https://youtu.be/tPFI2_PdCYA
	8.	https://youtu.be/zA-UtZ-s9GA
Unit 5	1.	https://youtu.be/AuZ00cQ0UrE?list=PLwjK_iyK4LLDBB1E9MFbxGCEnm
		ММОАХОН
		https://youtu.be/aU24RWIgJVs?list=PLwjK_iyK4LLDBB1E
		https://youtu.be/c5NeTnp_poA
	4.	https://youtu.be/KLGbPgls18k
	5.	https://youtu.be/UFJzQH3G1Ko?list=PLVrieKUj5RceFRq5MKy-f-
		EHdumStFPLt

B TECH FIRST YEAR

Course Code	ACSE0101	L	Т	Р	Credit	
Course Title	Problem solving using Python3 003					
Course object	ive:				ł	
1	To impart knowledge of basic building blocks of Python programming					
2	To provide skills to design algorithms for problem solving					
3	To impart the knowledge of implementation and debugging of basic programs in Python					
4	To disseminate the knowledge of basic data structures					
5	To provide the knowledge of file system concepts and data handling	d its	арр	olicati	ion in	

Pre-requisites:Students are expected to be able to open command prompt window or terminal window, edit a text file, download and install software, and understand basic programming concepts.

Course Contents / Syllabus

UNIT-I	Basics of python	programming
	J 1 V	1 0 0

8 hours

Introduction: Introduction to computer system, algorithms, Ethics and IT policy in company, Feature of object-oriented programming, A Brief History of Python, Applications areas of python, The Programming Cycle for Python, Python IDE, Interacting with Python Programs.

Elements of Python:keywords and identifiers, variables, data types and type conversion, operators in python, expressions in python, strings.

UNIT-II	Decision Control Statements	8 hours

Conditionals: Conditional statement in Python (if-else statement, its working and execution),

Nested-if statement and elif statement in Python, Expression Evaluation & Float Representation.

Loops: Purpose and working of loops, while loop, For Loop, Nested Loops, Break and Continue, pass statement.

UNIT-III	Function and Modules	8 hours
Introduction of	Function, calling a function, Function arguments, built in fur	nction, scope

rules, Passing function to a function, recursion, Lambda functions

Modules and Packages: Importing Modules, writing own modules, Standard library modules, dir() Function, Packages in Python

UNIT-IVBasicData structures in Python8 hours

Strings: Basic operations, IndexingandSlicing of Strings, Comparing strings, Regular expressions.

Python BasicData Structure: Sequence, Unpacking Sequences, Mutable Sequences, Lists,ListComprehension, Looping in lists, Tuples, Sets, Dictionaries

UNIT-V	File and Exception handling	8 hours

Files and Directories: Introduction to File Handling in Python, Reading and Writing files, Additional file methods, Working with Directories.

Exception Handling, Errors, Run Time Errors, Handling IO Exception, Try-except statement, Raise, Assert

Searching & Sorting: Simple search & Binary search, Selection Sort, Merge Sort

Course outcome: At the end of course, the student will be able to

CO 1	Write simple python programs.				
<i>CO 2</i>	Develop python programs using decision control statements	K3, K6			
<i>CO 3</i>	Implement user defined functions and modules in python	<i>K</i> ₂			
<i>CO</i> 4	Implement python data structures –lists, tuples, set, dictionaries	<i>K</i> ₃			
<i>CO</i> 5	Perform input/output operations with files in python and implement searching, sorting and merging algorithms	K ₃ , K ₄			

Text books

(1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"—Third Edition, Apress

(2) Python Programming using Problem solving approach by ReemaThareja OXFORD

Higher education

(3) Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning,

2012.

Reference Books

(1) John V Guttag, —Introduction to Computation and Programming Using Python'', Revised and expanded Edition, MIT Press, 2013

(2) Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem Solving Focus, Wiley India Edition, 2013.

(3) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016

(4) Robert Sedgewick, Kevin Wayne, Robert Dondero: Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

(5) Timothy A. Budd, —Exploring Python^{II}, Mc-Graw Hill Education (India) Private Ltd., 2015.

(6) Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.

E-book and E-Content

(1) https://www.pdfdrive.com/hacking-hacking-practical-guide-for-beginners-hackingwith-pythn-e182434771.html

(2) *https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-for-intermediates-e180663309.html*

(3) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e175246184.html

(4) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e160968277.html

(5) https://docs.python.org/3/library/index.html

(6) https://www.w3schools.com/python/

(7) https://www.py4e.com/materials

Reference Links

Unit-1 https://nptel.ac.in/courses/106/106/106106182/

Unit-2 https://nptel.ac.in/courses/106/106/106106212/

Unit-3 https://nptel.ac.in/courses/106/106/106106145/

Unit-4- https://nptel.ac.in/courses/106/106/106106145/

Unit-5- https://nptel.ac.in/courses/106/106/106106145/

[Unit-2]- https://www.youtube.com/watch?v=PqFKRqpHrjw

[Unit – 3] - https://www.youtube.com/watch?v=m9n2f9lhtrw

https://www.youtube.com/watch?v=oSPMmeaiQ68

[Unit 4] - https://www.youtube.com/watch?v=ixEeeNjjOJ0&t=4s

[Unit-5]- https://www.youtube.com/watch?v=NMTEjQ8-AJM

After Completing Course Student may get certification in python using following links:

Link for Certification:

https://swayam.gov.in/nd1_noc19_cs41/preview

https://aktu.ict.iitk.ac.in/courses/python-programming-a-practical-approach/

		B TECH FIRST YEAR		
Course C	ode	AASL0101	LTP	Credit
Course T	itle	Professional Communication	200	02
Course o	bjective			
1	• Th	e objective of the course is to ensure that the students can mmunicate effectively, in clear and correct English, in a sty propriate to the occasion.	vle	
2	(L	e course provides a foundation in the four basic skills LSR istening, Speaking, Reading,Writing) of language learning, an International Business English Certification.		
Pre-requ	isites:			
grar • All	nmatical s the studen	hould be able to communicate in basic English and have structures of English. Its must take an assessment exam to ascertain their level of ef induction course in it.		_
und		Course Contents / Syllabus		
UNIT-I Introduction & Reading Skills 7 Hot				
➢ Rea➢ Rea	ding comp ding texts	s (skimming, scanning, churning, & assimilation) prehension for paraphrasing & note making; diagram, chart, picture re ng of texts through suggested list of books	ading	
UNIT-II	Wı	riting Skills	1	0 Hours
anto Req Com pun Para	onyms; hor uisites of nmon err ctuation agraph wr	building - word formation; root words, prefixes & so mophones; abbreviations; one-word substitutes a good sentence ors - subject-verb agreement and concord, tenses, an ting er & email writing; notice & memo writing		
UNIT-III	Lis	tening Skills		5 Hours
TypOveTips	s for effec	6		
UNIT-IV		eaking Skills		8 Hours
> App	lied phon	tive speaking etics – phoneme, syllable, word accent n& intonation in English		

-	ng with confidence	10 Hours
UNIT-V	Public Speaking	10 Hours
1	nents of effective speaking in the workplace	
	speaking – Kinesics, Chronemics, Proxemics	
 Voice d Decise 	of Presentation, PPT support	
	Presentations & Etiquette	
	an Interview	
<i>y</i> ruonig		
Course outc	ome:	
At the end of th	ne course students will be able to	
CO 1	Understand the basic objective of the course and	
	comprehend texts for professional reading tasks in	
	preparation for an International Certification in Business	
	English.	
CO 2	Write professionally in simple and correct English.	
CO 3	Interpret listening tasks for better professional competence.	
CO 4	Recognize the elements of effective speaking with emphasis	
	on applied phonetics.	
CO 5	Apply the skill of speaking at the workplace.	
Text books		
1. Cambridge	English Business Benchmark (Pre-intermediate to Intermediate	ate), 2nd edition
Norman Whitb	y, Cambridge University Press, 2006, UK.	
2. Improve Yo	our Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ.	Press, 2001, Nev
Delhi.		
3. Technical C	ommunication - Principles and Practices by Meenakshi Raman &	Sangeeta Sharma
	Press, 2016, New Delhi.	C
Reference B	sooks	
1. Talbot,	Fiona. Improve Your Global Business English Kogan Page, 2012.	
	Geoffrey. Communicative Grammar of English Pearson Education	nHarlow, United
	m, 1994.	T ' D'
3. Sethi J	. Course in Phonetics and Spoken EnglishPrentice Hall India	Learning Privat

Anderson, Paul V. *Technical communication*. 8th ed. Cengage Learning, 2011.
 IELTS 11: General Training with answers. Cambridge English

Course	Code	AEC0151	LTP	Credit				
Course	Title	Basic Electrical and Electronics Engineering Lab	002	01				
		Suggested list of Experiment						
Sr. No.	Name	of Experiment		CO				
1		To Verify Kirchhoff's laws of a circuit						
2	To Veri	To Verify Superposition Theorem of a circuit						
3	To Veri	fy Thevenin's Theorem of a circuit		1				
4	To Veri	fy Norton's Theorem of a circuit		1				
5	To Veri	fy Maximum Power Transfer Theorem of a circuit		1				
6		ement of power and power factor in a single phase ac s nd study improvement of power factor using capacitor	eries inductive	2				
7	frequen	Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.						
8		Determination of efficiency by load test on a single phase transformer having 3 constant input voltage using stabilizer.						
9	Study and Calibration of single phase energy meter.							
10	To design half wave rectifier circuits using diode.							
11	To generate random numbers using 7-Segment display.							
12	Study of Cathode Ray Oscilloscope and measurement of different parameters using CRO.							
13	To desig	gn and perform Adder and Subtractor circuit using Op-Amp		5				
14	To understand the concept of Wireless Home Automation System based on IoT for controlling lights and fans.							
15	To calculate and draw different electrical parameter using MATLAB/Simulink for a circuit.							
16	Energy audit of labs and rooms of different blocks.							
		itcome: After successful completion of this course stud		ole to:				
CO 1	~ ~ •	he principle of KVL/KCL and theorem to analysis DC Elect						
CO 2		trate the behavior of AC circuits connected to single phase a single phase as well as three phase electrical circuits.	e AC supply an	d measure				
CO 3		e efficiency of a single phase transformer and energy consu	mption.					
CO 4		and the concept and applications of diode, Op-Amp,sensors	-					

NPTEL/ YouTube/ Faculty Video Link:

1. Virtual Lab Website"http://www.vlab.co.in/

		B.TECH. FIRST YEAR					
Lab	Code	ACSE0151	LTP	Credit			
Lab	Title	Problem Solving using Python Lab	002	1			
Cour	se out	come: At the end of course, the student will be abl	e to				
CO	1	Write simple python programs.		K ₂ , K ₃			
CO	CO 2 Implement python programs using decision control statements K ₃ ,						
CO	3	Writing python programs using user defined functions and mod	dules	K ₂			
CO		Implement programs using python data structures –lists, tuple dictionaries	es, set,	K ₃			
CO		Write programs to perform input/output operations on files		K ₃ , K ₄			
List o	f Exp	eriment: List of Fundamental Programs					
S.N.		Program Title		Catagory			
1	Pytho	n Program to print "Hello Python"		Basic			
2	Python Program to read and print values of variables of different data types.						
3	-	Python Program to read and print values of variables of different data types.BasicPython Program to perform arithmetic operations on two integer numbersBasic					
4	Python Program to Swap two numbers						
5							
6	-	n Program to demonstrate the use of relational operators.		Operators Operators			
7	-	n Program to understand the working of bitwise and logical op	berators.	1			
8	Python Program to calculate roots of a quadratic equation.						
9	Python Program to check whether a year is leap year or not.						
10	Pytho	n Program to find smallest number among three numbers.		nal Conditio			
				nal			
11	Python Program to make a simple calculator.						
12	Python Program to find the factorial of an integer number.						
13	Python Program to find the reverse of an integer number.						
14	-	n Program to find and print all prime numbers in a list.		Loop Loop			
15		n Program to Find the Sum of 'n' Natural Numbers		Loop			
16	-	n Program to print sum of series: - $1/2 + 2/3 + 3/4 ++n/(n+)$	1)	Loop			
17		n Program to print pattern using nested loop		Loop			
18	-	n Program to Display the multiplication Table of an Integer		Loop			
19	Pytho	n Program to Print the Fibonacci sequence		Loop			

20	Python Program to Check Armstrong Number	Loop
21	Python Program to Find Armstrong Number in an Interval	Loop
22	Python Program to check Using function whether a passed string is palindrome	Function
	or not	
23	Python Program using function that takes a number as a parameter, check	Function
	whether the number is prime or not.	
24	PythonProgram using function that computes gcd of two given numbers.	Function
25	Python Program to Find LCM of two or more given numbers.	Function
26	Python Program to Convert Decimal to Binary, Octal and Hexadecimal	Function
27	Python Program To Find ASCII value of a character	Basic
28	Python Program to Display Calendar	Loop
29	Python Program to Add Two Matrices	Loop
30	Python Program to Multiply Two Matrices	Loop
31	Python Program to Transpose a Matrix	Loop
32	Python Program to Sort Words in Alphabetic Order	Sorting
33	Python Program to Display Fibonacci Sequence Using Recursion	Recursio
		n
34	Python Program to Find Factorial of Number Using Recursion	Recursio
		n
35	Python Program that implements different string methods.	String
36	Python Program that validates given mobile number. Number should start with	String
	7, 8 or 9 followed by 9 digits.	
37	Python Program to implement various methods of a list.	List
38	Python Program that has a nested list to store toppers details. Edit the details	List
	and reprint them.	
39	Python Program to swap two values using tuple assignment.	Tuple
40	Python Program that has a set of words in English language and their	Dictionar
	corresponding Hindi words. Define dictionary that has a list of words in Hindi	у
	language and their corresponding Hindi Sanskrit. Take all words from English	
	language and display their meaning in both languages.	
41	Python Program that inverts a dictionary.	Dictionar
		у
42	Python Program that reads data from a file and calculates percentage of white	File
	spaces, lines, tabs, vowels and consonants in that file.	
43	Python Program that fetches data from a given url and write it in a file.	File
44	Python Program to understand the concept of Exception Handling	Exceptio
		n
		Handling
45	Python Program to implement linear and binary search	Searchin
		g
46	Python Program to sort a set of given numbers using Bubble sort	Sorting

S.No	Word Problem Experiments					
• 1.	String Rotation					
	Problem Description					
	Rotate a given String in the specified direction by specified magnitude.					
	After each rotation make a note of the first character of the rotated String, after all rotation are performed the accumulated first character as noted previously will form another string, say FIRSTCHARSTRING.					
	Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string. If yes print "YES" otherwise "NO". Input					
	The first line contains the original string s. The second line contains a single integer q. The ith of the next q lines contains character d[i] denoting direction and integer r[i] denoting the magnitude.					
	Constraints					
	$1 \le \text{Length of original string} \le 30$					
	$1 \le q \le 10$					
	Output					
	YES or NO					
	Explanation					
	Example 1					
	Input					
	carrace					
	3					
	L 2					
	R 2					
	L 3					
	Output					
	NO					
	Explanation					
	After applying all the rotations, the FIRSTCHARSTRING string will be "rcr" which is not					
	anagram of any sub string of original string "carrace".					
2.	Jurassic Park					
	Problem Description					
	Smilodon is a ferocious animal which used to live during the Pleistocene epoch (2.5 mya-					
	10,000 years ago). Scientists successfully created few smilodons in an experimental DNA research. A park is established and those smilodons are kept in a cage for visitors.					
	This park consists of Grasslands(G), Mountains(M) and Waterbodies(W) and it has three gates (situated in grasslands only). Below is a sample layout.					

W	Μ	G	G	G	G
М	G	w	G	М	M
G	G	G	G	G	G
w	G	G	м	w	G

Before opening the park, club authority decides to calculate Safety index of the park. The procedure of the calculation is described below. Please help them to calculate. Safety Index calculation

Assume a person stands on grassland(x) and a Smilodon escapes from the cage situated on grassland(y). If the person can escape from any of those three gates before the Smilodon able to catch him, then the grassland(x) is called safe else it is unsafe. A person and a Smilodon both take 1 second to move from one area to another adjacent area(top, bottom, left or right) but a person can move only over grasslands though Smilodon can move over grasslands and mountains.

If any grassland is unreachable for Smilodon(maybe it is unreachable for any person also), to increase safe index value Club Authority use to mark those grasslands as safe land. Explained below

W	м	G	G	G	G	
М	G	w	G(x)	м	м	
G	W	G	G(y)	G	G	
w	G(z)	w	м	w	G	

For the above layout, there is only one gate at (4,6)

Y is the position of Smilodon's cage

X is not safe area

Z is a safe area as is it not possible for smilodon to reach z

Safety index=(total grassland areas which are safe*100)/total grassland area

Constraints

- i. $3 \le R, C \le 10^3$
- ii. Gates are situated on grasslands only and at the edge of the park
- iii. The cage is also situated in grassland only
- iv. The position of the cage and the position of three gates are different

Input Format

The first line of the input contains two space-separated integers R and C, denoting the size of the park (R*C)

The second line contains eight space-separated integers where

First two integers represent the position of the first gate

3rd and 4th integers represent the position of second gate

5th and 6th integers represent the position of third gate respectively

	The last two integers represent the position of the same
	The last two integers represent the position of the cage
	Next R lines, each contains space separated C number of characters. These R lines
	represent the park layout.
	Output
	Safety Index accurate up to two decimal places using Half-up Rounding method
	Explanation
	Example 1
	Input
	4 4
	1 1 2 1 3 1 1 3
	G GGG
	G W W M
	GGWW
	M G M M
	Output
	75.00
3.	Bank Compare
	Problem Description
	There are two banks; Bank A and Bank B. Their interest rates vary. You have received
	offers from both bank in terms of annual rate of interest, tenure and variations of rate of
	interest over the entire tenure.
	You have to choose the offer which costs you least interest and reject the other.
	Do the computation and make a wise choice.
	The loan repayment happens at a monthly frequency and Equated Monthly Installment
	(EMI) is calculated using the formula given below :
	EMI = loanAmount * monthlyInterestRate/(1 - 1 / (1
	+monthlyInterestRate)^(numberOfYears * 12))
	Constraints
	1 · · D · · 1000000
	1. $1 \le P \le 1000000$ ii. $1 \le T \le 50$
	iii. $1 \le 11 \le 30$
	iv. $1 \le N2 \le 30$
	Input Format
	First line : P – principal (Loan Amount)
	Second line : T – Total Tenure (in years).
	Third Line : N1 is number of slabs of interest rates for a given period by Bank A. First slab
	starts from first year and second slab starts from end of first slab and so on.
	Next N1 line will contain the interest rate and their period.
	After N1 lines we will receive N2 viz. the number of slabs offered by second bank.
	Next N2 lines are number of slabs of interest rates for a given period by Bank B. First slab
	starts from first year and second slab starts from end of first slab and so on.
	The period and rate will be delimited by single white space.
	The period and face will be definited by single white space.

	Output
	Your decision – either Bank A or Bank B.
	Explanation
	Example 1
	Input
	10000
	20
	3
	5 9.5
	10 9.6
	5 8.5
	3
	10 6.9
	5 8.5
	5 7.9
	Output
	Bank B
4.	Cross Words
	Problem Description
	A crossword puzzle is a square grid with black and blank squares, containing clue numbers
	(according to a set of rules) on some of the squares. The puzzle is solved by obtaining the
	solutions to a set of clues corresponding to the clue numbers.
	The solved puzzle has one letter in each of the blank square, which represent a sequence of
	letters (consisting of one or more words in English or occasionally other languages)
	running along the rows (called "Across", or "A") or along the columns (called "Down" or
	"D"). Each numbered square is the beginning of an Across solution or a Down solution.
	Some of the across and down solutions will intersect at a blank square, and if the solutions
	are consistent, both of them will have the same letter at the intersecting square.
	In this problem, you will be given the specifications of the grid, and the solutions in some
	random order. The problem is to number the grid appropriately, and associate the answers
	consistently with the clue numbers on the grid, both as Across solutions and as Down
	solutions, so that the intersecting blank squares have the same letter in both solutions.
	Rules for Clue Numbering
	The clue numbers are given sequentially going row wise (Row 1 first, and then row2 and
	so on)
	Only blank squares are given a clue number
	A blank square is given a clue number if either of the following conditions exist (only one
	number is given even if both the conditions are satisfied)
	It has a blank square to its right, and it has no blank square to its left (it has a black square
	to its left, or it is in the first column). This is the beginning of an Across solution with that
	number

It has a blank square below it, and no blank square above it (it has a black square above it or it is in the first row). This is the beginning of a Down solution with that number **Constraints**

i. 5<=N<=15

ii. 5<=M<=50

Input Format

The input consists of two parts, the grid part and the solution part

The first line of the grid part consists of a number, N, the size of the grid (the overall grid is N x N) squares. The next N lines correspond to the N rows of the grid. Each line is comma separated, and has number of pairs of numbers, the first giving the position (column) of the beginning of a black square block, and the next giving the length of the block. If there are no black squares in a row, the pair "0,0" will be specified. For example, if a line contains "2,3,7,1,14,2", columns 2,3,4 (a block of 3 starting with 2), 7 (a block of 1 starting with 7) and 14,15 (a block of 2 starting with 14) are black in the corresponding row.

The solution part of the input appears after the grid part. The first line of the solution part contains M, the number of solutions. The M subsequent lines consist of a sequence of letters corresponding to a solution for one of the Across and Down clues. All solutions will be in upper case (Capital letters)

Output

The output is a set of M comma separated lines. Each line corresponds to a solution, and consists of three parts, the clue number, the letter A or D (corresponding to Across or Down) and the solution in to that clue (in upper case)

The output must be in increasing clue number order. If a clue number has both an Across and a Down solution, they must come in separate lines, with the Across solution coming before the Down solution.

Explanation
Example 1
Input
5
5,1
1,1,3,1,5,1
0,0
1,1,3,1,5,1
1,1
5
EVEN
ACNE
CALVE
PLEAS
EVADE

Output							
1,A,ACNE							
2,D,CALVE							
3,D,EVADE							
4,A,PLEAS							
5,A,EVEN							
Skateboard							
Problem Descri	iption						
The amusement	t park	at Pa	atago	nia h	as in	trodu	aced a new skateboard competition. The
skating surface i	is a gric	l of N	I x N	squa	res. N	Aost	squares are so constructed with slopes that
it is possible to	direct	the sl	cateb	oard	in an	y of	up to three directions of the possible four
(North ,East, So	outh or	West	, repr	esent	ed by	the	letters N, E, S and W respectively). Some
squares however	r have	a deej	p dro	p froi	n the	adja	cent square from which it is impossible to
go to any adjac	cent sq	uare.	Thes	se are	e repi	resen	ted by D (for Drop) in that square. The
objective is to n	naneuvo	er the	skat	eboar	d to 1	each	the South East comer of the and mented
							the south East corner of the grid, marked
F.							
F. Each contestant	is giv	en a	-		U	-	which shows where the Drop squares are
F. Each contestant (marked D), wh	is giv	en a e Fin	al de	stinat	ion i	s (m	which shows where the Drop squares are arked F), and, for each other square, the
F. Each contestant (marked D), wh directions it is p	is giv here the ossible	en a e Fin to ma	al de aneuv	stinat ver th	ion i e skat	s (m teboa	arked F), and, for each other square, the ard in that square.
F. Each contestant (marked D), wh directions it is p The contestant of	t is giv here the ossible draws le	en a e Fina to ma ots to	al de aneuv dete	stinat ver the rmine	ion i e skat e whi	s (m teboa ch of	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. f the squares on the boundaries of the grid
F. Each contestant (marked D), wh directions it is p The contestant c on the North or	is giv nere the ossible draws le the We	en a e Fina to ma ots to est of	al de aneuv dete f the	stinat ver the rmine grid (ion i e skat e whi (the to	s (m teboa ch of op of	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	t is giv nere the ossible draws le the We sing a r	en a e Fin- to ma ots to est of nap o	al de aneuv dete f the f the	stinat ver the rmine grid (grid,	ion i e skat e whi (the to he or	s (m teboa ch of op of	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. f the squares on the boundaries of the grid
F. Each contestant (marked D), wh directions it is p The contestant c on the North or	t is giv nere the ossible draws le the We sing a r	en a e Fin- to ma ots to est of nap o	al de aneuv dete f the f the	stinat ver the rmine grid (grid,	ion i e skat e whi (the to he or	s (m teboa ch of op of	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	t is giv nere the ossible draws le the We sing a r	en a e Fin- to ma ots to est of nap o	al de aneuv dete f the f the	stinat ver the rmine grid (grid,	ion i e skat e whi (the to he or	s (m teboa ch of op of	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	t is givenere the ossible draws let the We sing a reasonable the we show the the we show the we show the the we show the the we show the	en a to ma ots to est of nap o ering	al de aneuv dete f the f the sl	stinat ver the rmine grid (grid, catebo	ion i e skat e whi the to he or bard.	s (m teboa ch of op or she	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	t is giv nere the ossible draws le the We sing a r naneuve	en a to ma ots to est of nap o ering	al de aneuv dete f the f the the sl	stinat ver the rmine grid (grid, catebo	ion i e skat e whi (the to he or pard.	s (m teboa ch of op or she	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	t is giv nere the ossible draws le the We sing a r naneuve	en a to ma ots to est of nap o ering	al de aneuv dete f the f the sl	stinat ver the rmine grid (grid, catebo	ion i e skat e whi the to he or bard.	s (m teboa ch of op or she	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should needs to try to reach the South East corner
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	t is giv nere the ossible draws le the W sing a r naneuve	en a to ma ots to est of nap o ering	al de aneux dete f the f the sl	stinat ver the rmine grid (grid, catebo	ion i e skat e whi the to he or bard.	s (m. teboa ch of op or she s	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	t is givenere the ossible draws let the We sing a reason of the we sing a reason of the the we sing a reason of the	en a to ma ots to est of nap o ering	al de aneuv dete f the f the sl s s s	stinat ver the rmine grid (grid, grid, catebo	ion i e skat e whi (the to he or bard.	s (m. teboa ch of op or she s s s	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should needs to try to reach the South East corner
F. Each contestant (marked D), wh directions it is p The contestant of on the North or start in. Then, us	tis givenere the ossible draws letter was letter was letter was a reacted by the Wasing a reacted by the was letter was l	en a to ma ots to est of map o ering Es Es SE	al de aneux dete f the f the sl s s s s s	stinat ver the rmine grid (grid, grid, catebo	ion i e skat e whi the to he or pard. ES ES ES	s (m. teboa ch ot op or she s s s D	which shows where the Drop squares are arked F), and, for each other square, the ard in that square. If the squares on the boundaries of the grid r the left in the diagram) he or she should needs to try to reach the South East corner

A contestant asks you to figure out the number of squares at the North or West boundary (top or left boundary in the map) from which it is feasible to reach the destination.

Constraints
i. 5<=N<=50
Input Format
The first line of the input is a positive integer N, which is the number of squares in each
side of the grid.
The next N lines have a N strings of characters representing the contents of the map for that corresponding row. Each string may be F, representing the Final destination, D, representing a drop square, or a set of up to three of the possible four directions (N,E,S,W) in some random order. These represent the directions in which the contestant can maneuver the skateboard when in that square.
Output
The output is one line with the number of North or West border squares from which there is a safe way to maneuver the skateboard to the final destination.
Explanation
Example 1
Input
6
ES,ES,SE,ES,S
SE,ES,SE,ES,ES,S
ES,ES,SE,ES,SE,S
ES,SE,ES,SE,E,D
SE,ES,D,WSE,NES,NS
E,E,NE,E,F
Output
9
Chakravyuha Problem Description
During the battle of Mahabharat, when Arjuna was far away in the battlefield, Guru Drona made a Chakravyuha formation of the Kaurava army to capture YudhisthirMaharaj. Abhimanyu, young son of Arjuna was the only one amongst the remaining Pandava army who knew how to crack the Chakravyuha. He took it upon himself to take the battle to the enemies. Abhimanyu knew how to get power points when cracking the Chakravyuha. So great was his prowess that rest of the Pandava army could not keep pace with his advances. Worried at the rest of the army falling behind, YudhisthirMaharaj needs your help to track of Abhimanyu's advances. Write a program that tracks how many power points Abhimanyu has collected and also uncover his trail
A Chakravyuha is a wheel-like formation. Pictorially it is depicted as below

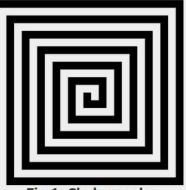


Fig 1. Chakravyuha

A Chakravyuha has a very well-defined co-ordinate system. Each point on the co-ordinate system is manned by a certain unit of the army. The Commander-In-Chief is always located at the centre of the army to better co-ordinate his forces. The only way to crack the Chakravyuha is to defeat the units in sequential order.

A Sequential order of units differs structurally based on the radius of the Chakra. The radius can be thought of as length or breadth of the matrix depicted above. The structure i.e. placement of units in sequential order is as shown below

1	2	3	4	5
16	17	18	19	6
15	24	25	20	1
14	23	22	21	8
13	12	11	10	9

The entry point of the Chakravyuha is always at the (0,0) co-ordinate of the matrix above. This is where the 1st army unit guards. From (0,0) i.e. 1st unit Abhimanyu has to march towards the center at (2,2) where the 25th i.e. the last of the enemy army unit guards. Remember that he has to proceed by destroying the units in sequential fashion. After destroying the first unit, Abhimanyu gets a power point. Thereafter, he gets one after destroying army units which are multiples of 11. You should also be a in a position to tell YudhisthirMaharaj the location at which Abhimanyu collected his power points.

Input Format:

First line of input will be length as well as breadth of the army units, say N **Output Format:**

- Print NxN matrix depicting the placement of army units, with unit numbers delimited by (\t) Tab character
- Print Total power points collected
- Print coordinates of power points collected in sequential fashion (one per line)

Sample	Input	and Out	tput	
	<u>S.</u>	Input	Output]
	NO.			
	1	2	1 2	
			4 3	
			Total Power points : 1	
			(0,0)	
	2	5	1 2 3 4 5	
			16 17 18 19 6	
			15 24 25 20 7	
			14 23 22 21 8	
			13 12 11 10 9	
			Total Power points : 3	
			(0,0)	
			(4,2)	
			(3,2)	
Exam I	Efficie	ncy		
Proble	n Desc	ription		
In an e	xamin	ation wit	h multiple choice questions, the following is th	e exam quest
pattern.				
	٠	X1 num	ber of One mark questions, having negative	score of -1
		answerin	ng wrong	
	•		ber of Two mark questions, having negative score oth options wrong	e of -1 and -2
	•		ber of Three mark questions, having negative scor	e of -12 and
			two or all three options wrong	,
	•		equired to Pass the exam : Y	
	•		and 3 mark questions, 1,2 and 3 options must be	selected. Sim
		-	e has to attempt to answer all questions against all	
Identify	the m	-	accuracy rate required for each type of question to c	-
-			one up to 11 precision and printing up to 2 digit p	
value				
Input F	ormat			
-			per of one mark questions denoted by X1,	
			mber of two mark questions denoted by X2	
			ber of three mark questions denoted by X3	
			mber of marks required to pass the exam denoted b	y Y.
Output				-
-			e required for one mark question is 80%	

Minin	num A	ccuracy rate required for Three mark qu	uestion is 90%	
Note:	- If th	e mark required to pass the exam can be	e achieved by attempting without	
attemp	pting a	ny particular type of question then show	v message similar to, One mark	
questi	on nee	d not be attempted, so no minimum acc	curacy rate applicable	
Samp	le Inp	ut and Output		
S.N	Inp	Output	Explanation	
0.	ut			
1	20	One mark questions need not be	If one got full marks in two	
	30	attempted, so no minimum accuracy	marks question and three	
	30	rate applicable.	marks question then total	
	120	Minimum Accuracy rate required for	accuracy can be 0 in one mark	
		Two mark question is 58.33%	question	
		Minimum Accuracy rate required for	1	
		Three mark question is 72.23%	In same way it will be done for	
		1	two marks and three marks	
			question	
2	20	Minimum Accuracy rate required for	If one got full marks in two	
	30	one mark question is 100%	marks question and three	
	30	Minimum Accuracy rate required for	marks question then total	
	170	Two mark question is 100%	accuracy should be 100% in	
		Minimum Accuracy rate required for	one mark question to pass the	
		Three mark question is 100%	exam.	
		1		
			In same way it will be done for	
			two marks and three marks	
			question	
Calcu	late S	alary and PF	*	
		escription		
		e Final Salary & Final Accumulated	PF of an Employee working in Al	BC
		vt. Ltd. The Company gives two Increa		
-	•	Increment) to an Employee in a Particu		
		yee must have Completed 1 Year to		'ear
		The Employee who are joining in the	-	
		onsidered as the Luckiest Employee's, b		`
- /		rements	1	5
U		ear Increment & Anniversary Incremen	ıt).	
`		rest for the Financial Year Increment =		
		test for the Anniversary Increment = 12°		
		ear, the Financial Year Increment will b		
		ear, the Financial Year Increment will b		
		ny is giving special Increment for the		ears
 	- Pul			

	& 8 years r	espectively.		
	So, the An	niversary Incren	nent of the Employee for the 4th Year will b	e 20% and the
	Anniversar	y Increment of th	e Employee for the 8th year will be 15%.	
	Calculate tl	ne Final Salary a	fter N number of Years as well as Calculate th	e Accumulated
		-	number of Years.	
			of Interest for calculating PF for a Particular	Month is 12%.
			imit of the amount if it is in decimal (For e.g	
			e 1251 for the Calculation.)	5
	Input Form		- <u></u>	
	i.		in dd/mm/yy format	
	ii.	-		
	iii.		ears for PF & Salary Calculation.	
	Output For			
	i.		he Specified Number of Years (i.e. CTC after N	number of
	1.	•	following format	
		Final Salary		
	ii.		PF of the Employee after N number of Years ir	the following
	11.	format	TT of the Employee after N number of Tears h	i the following
		Final Accum	ulated DF -	
	Constraint			
			upto 11-digit precision and output should be p	rinted with apil
	value	should be dolle	upto 11-digit precision and output should be p	
		out and Output		
		-	Outrant	٦
	S.I	N Input	Output	
	0.		F ' 10 1 12024	-
	1	5	Final Salary = 13924	
		01/01/2016	Final Accumulated PF = 2665	
		10000		
		2		-
	2	19/01/2016	Final Salary = 14718	
		6500	Final Accumulated $PF = 4343$	
		4		
9.	ISL Sched			
	Problem D	-		
			(SL) is an annual football tournament.	
		stage of ISL feat	tures N teams playing against each other with f	following set of
	rules:			
	i.	N teams play	against each other twice - once at Home and on	ce Away
	ii.	A team can p	lay only one match per day	
	iii.	A team canno	ot play matches on consecutive days	
	iv.	A team canno	ot play more than two back to back Home or Aw	vay matches

	Number of matches	in a day has following constraints
	a. The match p	pattern that needs to be followed is -
	• Day	1 has two matches and Day 2 has one match,
	• Day	3 has two matches and Day 4 has one match and so o
	b. There can no	ever be 3 or more matches in a day
vi.	Gap between two su	accessive matches of a team cannot exceed floor(N/2
	days where floor is	the mathematical function floor()
vii.	Derby Matches (any	y one)
	a. At least half	of the derby matches should be on weekend
	b. At least half	of the weekend matches should be derby matches
Your task is	to generate a schedule	abiding to above rules.
Input Form	at:	
First line con	tains number of teams	s (N).
Next line cor	ntains state ID of team	s, delimited by space
Output Form	mat:	
Match forma	t: Ta-vs-Tb	
where Ta is t	the home team with id	a and Tb is the away team with id b.
For each day	print the match(es) in	following format:-
Two matches	s:- "#D Ta-vs-Tb Tm-	vs-Tn"
One match:-	"#D Tx-vs-Ty"	
where D is the	ne day id and [a, b, m,	n, x, y] are team ids.
Constraints		
i.	8 <= N <= 100	
Note :		
•	-	e and have value between 1 to N
•	Day id starts with 1	
•	Every 6th and 7th d	ay are weekends
•	Derby is a football	match between two teams from the same state
Sample Inpu	ut and Output	
S.N	o. Input	Output
0.110	8	#1 T1-vs-T6 T3-vs-T5
1	-	
	12543166	#2 T7-vs-T4

a test case.

Explanation: There are 8 teams with following information: -

Τ		Team ID	1	2	3	4	5	6	7	8	
		State ID	1	2	5	4	3	1	6	6	
).	Longe	st Possible	Route			I					
	_	m Descrip									
	Given	an MxN m	atrix, wit	h a few	hurdles a	arbitraril	y placed	calculat	e the cos	t of long	est
	possibl	e route fro	m point A	A to poi	nt B with	in the m	atrix.				
	Input	Format:									
		i. Fi	rst line co	ontains	2 number	s delimit	ed by w	nitespace	where, f	first num	ber
		Μ	is numbe	er of rov	ws and se	cond nur	nber N i	s number	of colur	nns	
			cond line					llowed by	y H lines	, each lii	ne
			ll contain		-						
			ext line w		-						
		iv. No	ext line w	ill cont	ain point	B, stop p	oint in t	he matrix	κ.		
	-	t Format:									
	-	should dis	splay the	length o	of the lon	gest rout	e from p	oint A to	point B	in the m	atrix.
	Constr										
			ne cost fro		-						
			location								
			route will	-	onsider a	djacent h	ops. The	e route ca	annot cor	isist of	
			agonal ho		1 11	. 1	••, •				
			e position					·		· c	0.4
			ne values		-			ISISTS OF T	ows rang	ging from	n U to
			-1 and co					lactinatic	n overla	o with	
			the destin rdles, pri				source/ (estinatio	on overia	p with	
	Samul	e Input an	-		as -1.						
	Sampr	-	-		anation						
	1	-	24			vill be of	size 3v1	0 matrix	with a h	urdle at ((1 2) (1
	1	3			(1,8) with						
		1 2		una	1,0)	starting	pointri	0,0) und	stop pon	It D(1,7)	,
		15		3 10							
		18			no. of hu	rdles)					
		0 0		1 2							
		17		1 5							
		- /		18							
l					- (positio	n of A)					
					U I						
				17-	- (position	-					
				17-	- (positio	-					
					a	n of B)	nal answ	er will b	e 24. No	other rou	ute lon
				(->)	- (position count is 2 this one i	n of B) 24. So fii			e 24. No	other rou	ute lon

	0011		
	0 0		
Min Pr	oduct ar	ray	
	m Descri	-	
The tas	k is to fir	d the minimum su	um of Products of two arrays of the same size, given th
k modi	fications	are allowed on the	first array. In each modification, one array element of
the first	t array ca	n either be increas	ed or decreased by 2.
Note- t	he produc	et sum is Summati	on (A[i]*B[i]) for all i from 1 to n where n is the size
both ar	rays		
Input l	Format:		
l	i. F	irst line of the inp	ut contains n and k delimited by whitespace
			s the Array A (modifiable array) with its values
		elimited by spaces	
			the Array B (non-modifiable array) with its values
	d	elimited by spaces	5
-	t Format		
_		num sum of produ	icts of the two arrays
Constr			
		$\leq N \leq 10^{5}$	
		$\leq \mathbf{A}[\mathbf{i}] , \mathbf{B}[\mathbf{i}] \leq 10$	0^5
		$\leq K \leq 10^{9}$	
Sample		nd Output	
	S.No.	Input 3 5	Output
	1	3 3 1 2 -3	-31
		-2 3 -5	
	2	53	25
1	2	23454	23
		<i>4 3 7 3 7</i>	
		3 4 2 3 2	

	which i	s 3 and	decrea	sed it by (6 (as 3 modifications are allowed).			
	Now final sum will be							
	(2 * 3) + (-3 * 4) + (4 * 2) + (5 * 3) + (4 * 2)							
	6 - 12 + 8 + 15 + 8							
	25							
	25 is final answer.							
12.				um				
1	Consecutive Prime Sum Problem Description							
	Some prime numbers can be expressed as a sum of other consecutive prime numbers. For							
	example, $5 = 2 + 3$, $17 = 2 + 3 + 5 + 7$, $41 = 2 + 3 + 5 + 7 + 11 + 13$. Your task is to find							
	out how many prime numbers which satisfy this property are present in the range 3 to N							
	subject to a constraint that summation should always start with number 2. Write code to find out the number of prime numbers that satisfy the above mentioned.							
	Write code to find out the number of prime numbers that satisfy the above-mentioned							
	property in a given range.							
		S.	Inp	Outpu	Comment			
		No.	ut	t				
		1	20	2	(Below 20, there are 2 such members: 5 and 17)			
		1	20		5 = 2+3			
					17 = 2+3+5+7			
		2	15	1				
		Z	13	1				
	Input Format: First line contains a number N Output Format: Print the total number of all such prime numbers which are less than or equal to N. Constraints: 2 <n<=12,000,000,000< th=""></n<=12,000,000,000<>							
3.								
5.	kth largest factor of N Problem Description							
	A positive integer d is said to be a factor of another positive integer N if when N is divided							
	by d, the remainder obtained is zero. For example, for number 12, there are 6 factors 1, 2,							
	3, 4, 6, 12. Every positive integer k has at least two factors, 1 and the number k							
	itself.Given two positive integers N and k, write a program to print the kth largest factor of							
	N.							
	Input Format:							
	The input is a comma-separated list of positive integer pairs (N, k)							
	Output Format:							
	The kth highest factor of N. If N does not have k factors, the output should be 1.							
	Constraints:							
	1 <n<1000000000. 1<k<600.="" are<="" assume="" can="" factors="" have="" n="" no="" prime="" td="" that="" which="" will="" you=""></n<1000000000.>							

	larger than 13.						
	Example 1						
	Input:						
	12,3						
	Output: 4						
	Explanation:						
	N is 12, k is 3. The factors of 12 are (1,2,3,4,6,12). The highest factor is 12 and the third						
	largest factor is 4. The output must be 4						
14.							
	Problem Description						
	Find the minimum number of coins required to form any value between 1 to N, both						
	clusive. Cumulative value of coins should not exceed N. Coin denominations are 1						
	Rupee, 2 Rupee and 5 Rupee.						
	Rupee, 2 Rupee and 5 Rupee.						
	Let's understand the problem using the following example. Consider the value of N is 13,						
	then the minimum number of coins required to formulate any value between 1 and 13, is 6.						
	One 5 Rupee, three 2 Rupee and two 1 Rupee coins are required to realize any value						
	between 1 and 13. Hence this is the answer.						
	However, if one takes two 5 Rupee coins, one 2 rupee coins and two 1 rupee coins, then to						
	all values between 1 and 13 are achieved. But since the cumulative value of all coins						
	equals 14, i.e., exceeds 13, this is not the answer.						
	Input Format						
	A single integer value Output Format Four Space separated Integer Values						
	1st – Total Number of coins						
	2nd – number of 5 Rupee coins.						
	3rd – number of 2 Rupee coins.						
	4th – number of 1 Rupee coins.						
	Constraints						
	0 <n<1000 Sample Input: 13</n<1000 						
	Sample Output:						
	6132						
<u> </u>							
S. NO.	Debugging Experiments						
1.	Write error/output in the following code.						
	# abc.py						

	deffunc(n):					
	return $n + 10$					
	func('Hello')					
2.	Write the output of the following code.					
	if not a or b:					
	print 1					
	elif not a or not b and c:					
	print 2					
	elif not a or b or not b and a:					
	print 3					
	else:					
3.	print 4 Write error/output in the following code.					
5.						
	count = 1					
	defdeThis()					
	defdoThis():					
	global count					
	for i in (1, 2, 3):					
	$\operatorname{count} += 1$					
	doThis()					
	print count					
4.	Write the output of the following code.					
	check1 = ['Learn', 'Quiz', 'Practice', 'Contribute'] check2 = check1					
	check3 = check1[:]					
	check2[0] = 'Code'					
	check3[1] = 'Mcq'					
	count = 0					
	for c in (check1, check2, check3):					
	if $c[0] == 'Code':$					
	count += 1					
	if c[1] == 'Mcq':					
	$\operatorname{count} += 10$					
	print count					

5.	What is the output of the following program?
	D = dict()
	for x in enumerate(range(2)):
	D[x[0]] = x[1]
	D[x[1]+7] = x[0]
	print(D)
6.	What is the output/error in the following program?
	$D = \{1 : 1, 2 : '2', '1' : 1, '2' : 3\}$
	D['1'] = 2
	print(D[D[Str(D[1])]])
7.	What is the output/error in the following program?
	D = {1 : {'A' : {1 : "A"}, 2 : "B"}, 3 : "C", 'B' : "D", "D": 'E'}
	print(D[D[1][2]]], end = " ")
	print(D[D[1]["A"][2]])
8.	What is the output/error in the following program?
	D = dict()
	for i in range (3):
	for j in range(2):
	D[i] = j
	print(D)
9.	What is the output/error in the following program?
	x = ['ab', 'cd']
	for i in x:
	x.append(i.upper())
	print(x)
10.	What is the output/error in the following program?
	i = 1
	while True:
	if i%3 == 0:
	break
	print(i)
	i + = 1

		B. TECH FIRST YEAR		
Course	Code	AASL0151	L T P	Credit
Course	Title	Professional Communication Lab	0 0 2	1
		Suggested list of Experiment		
Sr. No.	Nan	ne of Experiment		
1	Exter	npore speech& Jam Sessions (4 hrs)		
2	Grou	p Discussion (4 hrs)		
3	Prese	entations (Individual and group) (4 hrs)		
4	Lister	ning Practice (2 hrs)		
5	News	s/ Book Review (Presentation based) (4 hrs)		
Lab Co	ourse C	Outcome:		
At the en	d of the	course students will be able to -		
CO 1	Learn t	o use English language for communicating ideas.		
CO 2		p interpersonal skills and leadership abilities.		
CO 3	Practic	e their public speaking skills and gain confidence in	it.	
CO 4	Realize	e the importance of analytical listening during comm	unication.	
CO 5	Apply	critical thinking skills in interpreting texts and disco	urses.	

	B. TECH FIRST YEAR		
Course Code	e AME0151	L T P	Credit
Course Title	Digital Manufacturing Practices	0 03	1.5
Course obje	ctive:		
1	To impart knowledge to students about the latest te in manufacturing technology.	chnological d	levelopments
2	To make the students capable to identify and use p manufacturing of job/product.	primary mach	nine tools for
3	Tomake the students understand constructional featu programming of CNC machines.	ures, principle	e and coding/
4	To explain current and emerging 3D printing techno	logies in indu	ustries.
5.	To impart fundamental knowledge of Automation and	nd Robotics.	
Pre-requisite	es: Basic knowledge about materials and their prope	rties	
	Course Contents / Syllabus		
UNIT-I	Basics of Manufacturing processes	3	Hours
Introduction to	workshop layout, engineering materials, mechan	ical propertie	es of metals,
introduction to	manufacturing processes, concept of Industry 4.0.		
UNIT-II	Machining processes	5	Hours
Introduction to	o conventional and CNC machines, machining	parameters	and primary
operations, CN	C programming- G& M Codes		
	Additive manufacturing (3D printing)		Hours
	additive manufacturing, 3D printing technolog injection moulding.	ies, reverse	engineering,
UNIT-IV	Automation and Robotics	3	Hours
	basics of automation and robotics, classification ba P motion using robot arm.	sed on geom	etry and path
Total hours	:14		
	ome: After completion of this course students wil		
CO 1	Understand various manufacturing process which a the industry.	re applied in	K ₁ , K ₂
CO 2	Demonstrate the construction and working of machine tools and computer controlled machine too		K ₁ , K ₂
CO 3	Understand the programming techniques of CNC n	nachines and	K ₁ , K ₂

	Robotic arms.	
CO	4 Use the different 3D printing techniques.	K ₁ , K ₂
Text b	ooks	
	e in Workshop technology by B.S. Raghuwanshi, Vol I & II, Dhanpat Elhi (30%)	Rai & sons,
Industri	al automation and Robotics by A.K. Gupta., S K Arora, Laxmi publication	n (30%)
CNC F (25%)	undamentals and Programming by P.M Agarwal, V.J Patel, Charotar	Publication
Refere	ence Books	
_ ` ´ '	pakjian S. And Steven S. Schmid, "Manufacturing Engineering and Techr Pearson Education India Edition, 2002.(80% syllabus)	nology", 4th
(2) Rap	id Product Development, Kimura Fumihiko(25% syllabus)	
(3) CN0	C Machines by M.Adhitan, B.S Pabla; New age international. (25% syllal	bus)
(4) CAI	D/CAM, by Groover and Zimmers, Prentice Hall India Ltd(25% syllabus)
	NPTEL/Youtube /Faculty video links:	
Unit 1	https://youtu.be/b1U9W4iNDiQ , https://youtu.be/QZdY3ZRY9RA, https://youtu.be/KX1_NqNTIqw , https://youtu.be/deAIYwPns6w	
Unit2	https://youtu.be/jF4F8Zr2YO8 , https://youtu.be/bDpfTzV6StA, https://youtu.be/6G3sHym7YSo	
Unit3	https://youtu.be/TZmYTfPfhNE, https://youtu.be/yW4EbCWaJHE	
Unit4	https://youtu.be/K-Zg1-fR9kU , https://youtu.be/xrwz9IxpMJg , https://youtu.be/j8vYClEnyk0	

			B. TECH I	FIRST YE	AR		
`Course Co	ode	AME0	151			LTP	Credit
Course Tit	le	Digital	Manufact	uring Pra	ctices	00 3	1.5
		Su	ggested list	of Experi	iments		
	(4	At least	10 experin	nents to be	e perfor	med)	
Sr. No.			Na	me of Exp	eriment	ts	
1			ng, turning, er given drav				g and threading
2	-	epare a T- g shop.	Shape and U-	shape work	piece by f	filing, sawi	ng, drilling in
3	To cas	st a compo	nent using a	single piece	pattern in	foundry sl	10p,
4	To study the G-M Codes for CNC machine and to perform different machining operations including facing, turning, grooving etc on CNC lather						
5	To cut	t a slot on	CNC milling	machine as	per given	drawing.	
6	To ma	ake a hole	of given dian	neter on CN	C drilling	machine.	
7	To stu	ıdy constru	iction and wo	orking of FD	M 3D pri	nting mach	ine.
8	To stu	ıdy constru	iction and wo	orking of SL	A 3D prin	ting machi	ne.
9	To stu	idy the dev	velopment of	drawings us	ing 3D sc	anner.	
10	To ma	ake an air 1	ight bottle ca	p by using i	njection n	noulding.	
11	. To study construction and working of six axis robot (KUKA Sim Pro 3.0.4).						JKA Sim Pro
12	Practic	ce on pneu	imatic contro	l system usin	ng single a	acting cylin	nder.

•

•		L P	Т		Credit
Course obje	e ENGINEERING MATHEMATICS-II		1	0	4
•	ective: The objective of this course is to familiarize the er	nginee	ring	r stud	ents with
lechniques of	solving Ordinary Differential Equations, Fourier series	-	-		
-	vector calculus and its application in real world. It aims to		-		-
	ledge of mathematics that will enable them in formulating				
problems analy	-	-8 prot		10 u 11	a serving
Pre-requisit	es:Knowledge of Engineering Mathematics –I and	Mathe	mat	ics 1	upto 12 ^{ti}
standard.					1
	Course Contents / Syllabus				
	dinary Differential Equation of Higher Order				0 hours
	ntial equation of nth order with constant coefficients,		-		-
	lineardifferential equations, Second order linear diffe			-	
	cients, Solution by changing independent variable, Redu		of	order	, Norma
form, Method	of variation of parameters, Series solutions (Frobenius Met	thod).			
UNIT-II	Sequences and series				8 hours
	sequence and series with examples, Convergence of sequer				
-	ee of series, (Ratio test, D' Alembert's test, Raabe's test). F	ourier	ser	ies, F	lalf
0	sine and cosine series.				
UNIT-III	Laplace Transform				8 hours
Laplace transf	form, Existence theorem, Laplace transforms of derivativ	ves and	1 in	tegra	ls, Initial
and final value	e theorems, Unit step function, Dirac- delta function, Lapla	ce trar	nsfo	rm of	f periodic
function, Inver	rse Laplace transform, Convolution theorem, Application	n to so	olve	sim	ple linear
and simultaned	ous differential equations.				
UNIT-IV	Vector Calculus				8 hours
	ntiation: Gradient, Curl and Divergence and their Physical	interpr	etat	tion,	
Vector differer	rivatives, Tangent and Normal planes.				
				oence	2
Directional der	tion: Line integral, Surface integral, Volume integral, Gaus	ss's Di	ver	Series	-
Directional der Vector Integra	tion: Line integral, Surface integral, Volume integral, Gaus en's theorem, Stoke's theorem (without proof) and their ap			-	-
Directional der Vector Integra				5.	
Directional der Vector Integra Theorem, Gree UNIT-V	en's theorem, Stoke's theorem (without proof) and their ap Aptitude-II	oplicati	ions	5.	8 hours
Directional der Vector Integra Theorem, Gree UNIT-V Ratio, Proport	en's theorem, Stoke's theorem (without proof) and their ap	oplicati	ions	5.	8 hours
Directional der Vector Integra Theorem, Gree UNIT-V Ratio, Proport	en's theorem, Stoke's theorem (without proof) and their ap Aptitude-II ion & Partnership, Problem of ages, Allegation & Mi	oplicati	ions	5.	8 hours
Directional der Vector Integra Theorem, Gree UNIT-V Ratio, Proport relation, Simp	en's theorem, Stoke's theorem (without proof) and their ap Aptitude-II ion & Partnership, Problem of ages, Allegation & Mi	xture,	ions Dir	s. rectio	8 hours

CO 2	Apply the concept of convergence of sequence and series to evaluate	K ₃
	Fourier series	
CO 3	Apply the Laplace transform to solve ordinary differential equations	K ₃
CO 4	Apply the concept of vector calculus to evaluate line, surface and volume	K ₃
	integrals.	
CO 5	Solve the problems of Proportion & Partnership, Problem of ages,	K ₃
	Allegation & Mixture, Direction, Blood relation , Simple & Compound	
	interest	
Text bo	oks:	
(1) B. V.	Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing G	Company
Ltd		
(2) B. S.	Grewal, Higher Engineering Mathematics, Khanna Publisher.	
Referen	ce Books:	
1. E. Krey	yszig, Advance Engineering Mathematics, John Wiley & Sons.	
2. Peter V	V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.	
3. Mauric	e D. Weir, Joel Hass, Frank R.Giordano, Thomas, Calculus, Eleventh Edition,	Pearson.
4. G.B Tł	nomas, R L Finney, Calculus and Analytical Geometry, Ninth Edition Pearson.	
5. James	Ward Brown and Ruel V Churchill, Fourier Series and Boundary Value Problem	lems, 8th
Edition-T	ata McGraw-Hill	
6. D. Poo	le, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole.	
7. Veerar	ajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi	•
8. Charle	s E Roberts Jr, Ordinary Diffrential Equations, Application, Model and Co	mputing,
CRC Pres	ss T&F Group.	
-	Vylie C and Louis C Barret, Advanced Engineering Mathematics, 6th Edition	ion, Tata
McGraw-		
10. James	s Ward Brown and Ruel V Churchill, Complex Variable and Applications, 8th	Edition,
	Graw-Hill.	
	ivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st	Edition,
	ndia Education Services Pvt. Ltd.	
	nced Engineering Mathematics By Chandrika Prasad, Reena Garg Khanna Pu	ublishing
House, D		
-	itative Aptitude by R.S. Aggrawal.	
Link:		
Unit 1	https://www.youtube.com/watch?v=Ql42qcOLKfo&t=7s	
	https://www.youtube.com/watch?v=qIyx1kFTqT8	
	https://www.youtube.com/watch?v=n_3ZmnVnrc4	
	https://www.youtube.com/watch?v=19Vt7ds8Lvw	
T T 1 / 0		
Unit 2	https://www.youtube.com/watch?v=HUKR4LWrZ14&t=74s	
	https://www.youtube.com/watch?v=uei7JPnPpVg	

	https://www.youtube.com/watch?v=ummJvI0Ax2Q
	https://www.youtube.com/watch?v=bWTmUWWZnhQ
	https://www.youtube.com/watch?v=wpN1wn98XiA
	https://www.youtube.com/watch?v=gK1Y11UxOhw
	https://www.youtube.com/watch?v=Clwkvn77QrE&t=10s
	https://www.youtube.com/watch?v=LGxE_yZYigI
Unit 3	https://youtu.be/nmp-5tSp-UY
	https://youtu.be/6ANT4eD6fII
	https://youtu.be/c9NibpoQjDk
	https://www.youtube.com/playlist?list=PLNOGlXC4kCBT8G5pWCrH71hmwaAvwsBY3
Unit 4	https://youtu.be/IwgqKjA6wko
	https://youtu.be/d4OyeuRTZNA
	https://youtu.be/j36lJKSJMQk
	https://youtu.be/DhwMOrl6Q9g
	https://youtu.be/DhwMOrl6Q9g
	https://youtu.be/fsMouTxce_A
	https://youtu.be/yq5olnzDCGc
	https://youtu.be/2SB3IVCwW1w
	https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-
	functions/line-integrals-vectors/v/line-integra
	https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-
	functions/3d-flux/v/vector-representation-of-a-su
	http://nucinkis-lab.cc.ic.ac.uk/HELM/workbooks/workbook_29/29_2_surfac
	https://www.youtube.com/watch?v=Mb6Yb-SGqio
	https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-
	theorem/stokes-theorem/v/stokes-theorem-intuition
	https://www.youtube.com/watch?v=eSqznPrtzS4
Unit 5	https://www.GovernmentAdda.com

	B. TECH FIRST YEAR		
Course Code	ACSE0203	L T P	Credits
Course Title	DESIGN THINKING I	310	4
Course Objec	ives:		
e	this course is to familiarize students with design think	U 1	
•	ovation. It aims to equip students with design thinking ski	ills and igni	ite the minds to
create innovative	ideas, develop solutions for real-time problems.		
Pre-requisites	: None		
	Course Contents / Syllabus		
UNIT-I	Introduction		8 HOURS
Introduction to d	esign thinking, traditional problem solving versus design	thinking, hi	istory of design
thinking, wicked	problems. Innovation and creativity, the role of inn	ovation an	d creativity in
organizations, cr	eativity in teams and their environments, design mindset	. Introducti	on to elements
and principles of	design, 13 Musical Notes for Design Mindset, Examples	s of Great	Design, Design
Approaches acros	s the world		
UNIT-II	Ethical Values and Empathy		8 HOURS
_	umans as a combination of I (self) and body, basi		_
	sperity, the gap between desires and actualization. Under		
society, institutio			,
•	iding core values and feelings, negative sentiments and		-
	onduct: universal human goal, developing human consci		
	Inderstand stakeholders, techniques to empathize, iden		-
1.	Interviews, empathy maps, emotional mapping, imm		
customer journe	maps, and brainstorming, Classifying insights after	Observation	ns, Classifying
Stakeholders, Do		isin walk'	
UNIT-III	's &Don'ts for Brainstorming, Individual activity- 'Mocca		
e 1	Problem Statement and Ideation	V) statem	
idantituina driva	Problem Statement and Ideation blem statement, creating personas, Point of View (PO	/	ents. Research-
	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fe	edbacks. Id	ents. Research- lea Generation-
basic design dire	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fe ctions, Themes of Thinking, inspirations and references,	edbacks. Id brainstorn	ents. Research- lea Generation- ning, inclusion,
basic design dire sketching and pr	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fer ctions, Themes of Thinking, inspirations and references, esenting ideas, idea evaluation, double diamond approad	edbacks. Id brainstorn ch, analyze	ents. Research- lea Generation- ning, inclusion, – four W's, 5
basic design dire sketching and pr why's, "How M	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fer ctions, Themes of Thinking, inspirations and references, esenting ideas, idea evaluation, double diamond approace ight We",Defining the problem using Ice-Cream Stick	edbacks. Id brainstorn ch, analyze cs, Metaph	ents. Research- lea Generation- ning, inclusion, – four W's, 5 or & Random
basic design dire sketching and pr why's, "How M Association Tech	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fer ctions, Themes of Thinking, inspirations and references, essenting ideas, idea evaluation, double diamond approad ight We",Defining the problem using Ice-Cream Sticl nique, Mind-Map,ideation activity games - six thinking	edbacks. Id brainstorn ch, analyze cs, Metaph hats, milli	ents. Research- lea Generation- ning, inclusion, – four W's, 5 or & Random
basic design dire sketching and pr why's, "How M Association Tech	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fer ctions, Themes of Thinking, inspirations and references, esenting ideas, idea evaluation, double diamond approace ight We",Defining the problem using Ice-Cream Stick	edbacks. Id brainstorn ch, analyze cs, Metaph hats, milli	lea Generation- ning, inclusion, – four W's, 5 or & Random
basic design dire sketching and pr why's, "How M Association Tech	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fer ctions, Themes of Thinking, inspirations and references, essenting ideas, idea evaluation, double diamond approad ight We",Defining the problem using Ice-Cream Sticl nique, Mind-Map,ideation activity games - six thinking	edbacks. Id brainstorn ch, analyze cs, Metaph hats, milli	ents. Research- lea Generation- ning, inclusion, – four W's, 5 or & Random
basic design dire sketching and pr why's, "How M Association Tech introduction to vi UNIT-IV	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fer ctions, Themes of Thinking, inspirations and references, essenting ideas, idea evaluation, double diamond approace ight We",Defining the problem using Ice-Cream Sticl nique, Mind-Map,ideation activity games - six thinking sual collaboration and brainstorming tools - Mural, JamB	edbacks. Id brainstorn ch, analyze cs, Metaph hats, milli oard.	ents. Research- lea Generation- ning, inclusion, – four W's, 5 or & Random ion-dollar idea, 6 HOURS
basic design dire sketching and pr why's, "How M Association Tech introduction to vi UNIT-IV Fundamental cor	Problem Statement and Ideation blem statement, creating personas, Point of View (PO rs, information gathering, target groups, samples, and fea ctions, Themes of Thinking, inspirations and references, essenting ideas, idea evaluation, double diamond approad ight We",Defining the problem using Ice-Cream Sticl nique, Mind-Map,ideation activity games - six thinking sual collaboration and brainstorming tools - Mural, JamB Critical Thinking	edbacks. Id brainstorn ch, analyze cs, Metaph c hats, milli oard.	ents. Research- lea Generation- ning, inclusion, – four W's, 5 or & Random ion-dollar idea, 6 HOURS inary thinking,

UNIT-V	Logic and Argumentation	8 HOURS	
The argument,	claim, and statement, identifying premises and conclusion, truth and logi	c conditions,	
valid/invalid a	rguments, strong/weak arguments, deductive argument, argument diagr	rams, logical	
reasoning, scie	entific reasoning, logical fallacies, propositional logic, probability, an	nd judgment,	
obstacles to cri	tical thinking. Group activity/role plays on evaluating arguments		
Course outc	ome: After completion of this course, students will be able to		
CO 1Develop a strong understanding of the design process and apply it in a variety of business settingsK2			
CO 2	Analyze self, culture, teamwork to work in a multidisciplinary environment and exhibit empathetic behavior	K3	
CO 3	Formulate specific problem statements of real time issues and generate innovative ideasusing design tools	K3,K6	
CO 4	Apply critical thinking skills in order to arrive at the root cause from a set of likely causes	K3	
CO 5	Demonstrate an enhanced ability to apply design thinking skills for evaluation of claims and arguments	K3,K4	
Textbooks		I	
1. Arun Ja	in, UnMukt : Science & Art of Design Thinking, 2020, Polaris		
	Liedta, Andrew King and Kevin Benett, Solving Problems with Design pries of What Works,2013,Columbia Business School Publishing	n Thinking –	
	ur, R Sangal, G P Bagaria, A Foundation Course in Human Values and First Edition, 2009, Excel Books: New Delhi	Professional	
Reference B	ooks		
•••	Kumar, 101 Design Methods: A Structured Approach for Driving Innova zation, 2013, John Wiley and Sons Inc, New Jersey	tion in Your	
	erjee, Foundations of Ethics and Management, 2005, Excel Books		
SA	Ambrose and Paul Harris, Basics Design 08: Design Thinking, 2010, AV	0	
-	L. Martin, Design of Business: Why Design Thinking is the Next age, 2009, Harvard Business Press, Boston MA	Competitive	
NPTEL/ Yo	uTube/ Web Link		
Unit I			
	.in/courses/110/106/110106124/		
	.in/courses/109/104/109104109/		
	inking.ideo.com/		
	<u>peinnovation.com/an-introduction-to-design-thinking-for-innovation-mana</u>	agers	
-	eativityatwork.com/design-thinking-strategy-for-innovation/ htube.com/watch?v=GFffb2H-gK0		
Unit II			
https://aktu.ac.i	n/hvne/		
inponational.			

http://aktu.uhv.org.in/

https://nptel.ac.in/courses/110/106/110106124/

https://swayam.gov.in/nd1_noc19_mg60/preview

Unit III

https://nptel.ac.in/courses/110/106/110106124/

https://swayam.gov.in/nd1_noc19_mg60/preview

https://www.udemy.com/course/design-thinking-for-beginners/

https://www.designthinking-methods.com/en/

https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them Unit IV

https://www.forbes.com/sites/sap/2016/08/25/innovation-with-design-thinking-demands-critical-thinking/#340511486908

https://www.criticalthinking.org/pages/defining-critical-thinking/766

Unit V

https://www.udemy.com/course/critical-thinker-academy/

https://swayam.gov.in/nd2_aic19_ma06/preview

		B.TECH FIRST YEAR						
Cour	se Code	AAS0201A	L	Т	Р	Credi	it	
Cour	se Title	ENGINEERING PHYSICS	3	6 1 0 4				
Cour	se objective							
1	To provide applications.	the knowledge of Relativistic Mechanics and their us	ses	to e	engin	eering		
2	To provide the utilization.	ne knowledge of Quantum Mechanics and to explore possi	ible	eng	ineer	ing		
3	To provide the knowledge of interference and diffraction.							
4	To provide the engineering a	ne knowledge of the phenomenon of semiconductors and i applications.	ts u	ses 1	0			
5	-	ne basic knowledge of Optical Fiber and Laser which is ne ne working of modern engineering tools and techniques.	ces	sary	to			
	equisites: N laws of optic	ewton's laws of motions, scalar and vectors, electers.	ctri	city	and	l magr	etism	
	1	Course Contents / Syllabus						
UNIT	-I	Relativistic Mechanics				8 hour	'S	
Relativ	vistic relation b	dition theorem, Variation of mass with velocity, Einste etween energy and momentum, Massless particle. plications(qualitative): Global positioning system (GPS), A						
UNIT		Quantum Mechanics	трр				hours	
Introdu uncerta and tin	uction to wave- ainty principle ne- independer	particle duality, de Broglie matter waves, Phase and group and its applications, Wave function characteristics and sig t Schrödinger's wave equations, Particle in one-dimension of the Higgs field (Higgs Boson or GOD particle)(qualitati	nifi nal 1	cano rigid	e, T	Heisent ime-dep	perg's pendent	
UNIT	ſ-III	Wave Optics				10	hours	
Newto Diffrao	n's Rings and	terference in uniform and wedge shaped thin films, Neco its applications,Fraunhofer diffraction at single slit and at grating spectra, Rayleigh's criterion of resolution, Re-	doi	uble	slit,	absent	spectra	
UNIT	ſ-IV	Semiconductor Physics and Information Storage				6	hours	
Fermi- extrins	Dirac probabi sic semiconduc	e concept of electrical conductivity, conductivity of conductivity distribution function, Position of Fermi level in integration of Fermi level with temperature (qualitated on the basis of band diagrams and Applications.	trins	sic s	emic	onducto	ors and	

UNIT-V	Fiber Optics & Laser	8 hours
Fiber Optics: Intr	roduction to fiber optics, Acceptance angle, Numerical aperture, I	Normalized frequency,
Classification of	fiber, Attenuation and Dispersion in optical fibers.	
Laser: Absorption	n of radiation, Spontaneous and stimulated emission of radiation, 1	Einstein's coefficients,
Population invers	sion, Ruby Laser, He-Ne Laser.	
Recent applicatio	nsof optical fibersandLaser(Qualitative):Laser-guided UAV (Dron	e).
Course outcom	me: After completion of this course students will be able	to:
CO 1	Solve the relativistic mechanics problems	K1,K2,K3
CO 2	Apply the concept of quantum mechanics	K1,K2,K3
CO 3	Apply the laws of optics and their application in various processes	K1,K2,K3
CO 4	Define the laws of semiconductors.	K1,K2
CO 5	Explain the working of modern engineering tools and	K1,K2
	techniques of optical fiber and laser.	
Text books		
1. A. Beiser	, Concepts of Modern Physics (McGraw Hill)	
•	ubramanian,Optics (S. Chand)	
	ehta, Applied Physics for Engineers (PHI Learning, New)	
Reference Boo	oks	
1. Robert Resni	ick,Introductionto Special Theory of Relativity (Wiley)	
2. Katiyar and	Pandey, Engineering Physics: Theory and Practical (Wiley India)	
	and A. K. Singh, Engineering Physics- (McGrawHill)	
	, Jr. and R. A. Serway , Physics for Scientists and Engineers wit	h Modern Physics,7th
	AGE Learning)	
	blid State Physics,7th Edn. (Wiley Eastern)	
Ŭ	h, Materials Science and Engineering (Prentice Hall, India)	
	Solid State Physics,5th Edn (New Age International) nd E. Boysen , Nanotechnology (Wiley Publ.)	
	, Engineering Physics, 2nd Edn. (PHI Learning)	
	, Engineering Physics (PHI Learning)	
	I G.S. Sahasrabudhe, Engineering Physics (Universities Press)	
	Modern Magnetism, (Cambridge Univ. Press)	
	Y.Yang, Introduction to Optical Engineering (Cambridge Univ.P	ress)
	otical Communications Essentials (Tata McGrawHill)	,

		B. TECH FIRST YEAR				
Course (Code	ACSE0202	L P	Т		Credit
Course 7	Fitle	Problem solving using Advanced Python	3	1	0	4
Course o	bject	ive: The objective of the course is to make its s	stude	ents	abl	le
1	•	rn the Object Oriented Concepts in Python				
2	To lea	rn the concept of reusability through inheritance and	oolyn	norp	hisr	n
3	To im	part the knowledge of functional programming				
4	To lea	rn the concepts of designing graphical user interfaces				
5	To exp	plore the knowledge of standard Python libraries				
Pre-requ	isites	Students are expected to have basic knowledge of p	rogra	mn	ning	concepts
of python p	prograr	nming.				
		Course Contents / Syllabus				
UNIT-I		Classes and Objects			8	hours
Introductio	on: Pyt	non Classes and objects, User-Defined Classes, Enca	psula	tion	, Da	ta hiding
, Class Va	riables	and Instance Variables, Instance methods, Class me	ethod	, sta	atic	methods,
constructor	r in py	thon, parametrized constructor, Magic Methods in	pytho	on,	Obj	ect as an
argument,	Instanc	es as Return Values, namespaces				
UNIT-II		Object Oriented Concepts				8 hours
Class's Me	ethod, N on: In	he Specialization, Inheritance, Types of inheritance, Aethod overriding, abstract class, MRO and super (),	Polyı	nor	phis	
	-	trospecting types, Introspecting objects, Introspec ct tools	tıng	sco	pes,	
UNIT-III	[tıng	sco	-	
Map, filter	, Redu	ct tools				inspect 8 hours
Map, filter	, Redues, itera	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec			gene	inspect 8 hours
Map, filter Co-routine UNIT-IV Ipywidgets Widgets, I	r, Reduces, itera	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W cker, Color Picker, Container Widgets, Creating a GU	orato	rs, <u>ş</u>	gene	inspect 8 hours rators, 8 hours
Map, filter Co-routine UNIT-IV Ipywidgets	r, Reduces, itera s Packa Date Pic	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W cker, Color Picker, Container Widgets, Creating a GU	orato	rs, <u>ş</u>	gene	inspect 8 hours rators, 8 hours
Map, filter Co-routine UNIT-IV Ipywidgets Widgets, I Tkinter, bu UNIT-V	r, Reduces, itera	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W cker, Color Picker, Container Widgets, Creating a GU anvas.	orato idget: I App	rs, §	gene tring	inspect 8 hours rators, 8 hours 5 1, 8 hours
Map, filter Co-routine UNIT-IV Ipywidgets Widgets, I Tkinter, bu UNIT-V NumPy: F	, Reduces, itera s Packa Date Pio atton, c Basic O	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W cker, Color Picker, Container Widgets, Creating a GU anvas. Libraries in Python	orato idget: I App asiona	rs, §	gene tring ation	inspect 8 hours rators, 8 hours 5, 8 hours 5, NumPy
Map, filter Co-routine UNIT-IV Ipywidgets Widgets, I Tkinter, bu UNIT-V NumPy: H Data types	, Reduces, itera s Packa Date Pio atton, c Basic O s, Read	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W eker, Color Picker, Container Widgets, Creating a GU anvas. Libraries in Python peration, Indexing, slicing and Iterating, multidimer	orato idgeta I App asiona	rs, §	gene tring ation rays es, (inspect 8 hours rators, 8 hours 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Map, filter Co-routine UNIT-IV Ipywidgets Widgets, I Tkinter, bu UNIT-V NumPy: H Data types aggregatio	, Reduces, itera s Packa Date Pio atton, c Basic O s, Read n, Mer	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W cker, Color Picker, Container Widgets, Creating a GU anvas. Libraries in Python peration, Indexing, slicing and Iterating, multidimer ing and writing data on Files, Pandas : Series and Da	orato idget: I App asiona ata Fr	rs, g s, S blica al an amo to lo	gene tring tring trays es, (ogic:	inspect 8 hours rators, 8 hours 9 8 hours 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Map, filter Co-routine UNIT-IV Ipywidgets Widgets, I Tkinter, bu UNIT-V NumPy: H Data types aggregatio Manipulati	, Reduces, itera s Packa Date Pio atton, c Basic O s, Read n, Mer ion of	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W eker, Color Picker, Container Widgets, Creating a GU anvas. Libraries in Python peration, Indexing, slicing and Iterating, multidimer ing and writing data on Files, Pandas : Series and Da ge Data Frames, Generate summary tables, Group da	orato idget: I App asiona ata Fi ata ini n, mo	rs, g s, S blica all an amo to lo	gene tring ation rrays es, C ogica les o	inspect 8 hours rators, 8 hours 4 hours 5, 9 8 hours 5, 9 8 hours 5, 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Map, filter Co-routine UNIT-IV Ipywidgets Widgets, I Tkinter, bu UNIT-V NumPy: H Data types aggregatio Manipulati Matplotlil subplots, H	Reduces, itera s Packa Date Pio atton, c Basic O s, Read n, Mer ion of b: Scat Plotting	ct tools Functional Programming ce, Comprehensions, Immutability, Closures and Dec tors, Declarative programming GUI Programming ge, Numeric Widgets, Boolean Widgets, Selection W cker, Color Picker, Container Widgets, Creating a GU anvas. Libraries in Python peration, Indexing, slicing and Iterating, multidimer ing and writing data on Files, Pandas : Series and Da ge Data Frames, Generate summary tables, Group da data. SciPy: Introduction to SciPy, Create function	orato idgets I App asiona ata Fi ata int n, mo itle S Save	rs, g s, S blica and to lo odul tyle	gene tring tring tring tring tring trays es, C ogica les o ;, Fig	inspect 8 hours rators, 8 hours 9 4, 8 hours 5, NumPy 6 rouping, al pieces, of SciPy. gures and

Course	outcome: At the end of course, the student will be abl	e to
CO 1	Define classes and create instances in python	K ₁ , K ₂
CO 2	Implement concept of inheritance and polymorphism using python	K ₃
CO 3	Implement functional programming in python	K ₂
CO 4	Create GUI based Python application	K ₃
CO 5	Applythe concept of Python libraries to solve real world problems	K ₃ , K ₆
Text bo	oks	1
(1) Magnu Apress	us Lie Hetland, "Beginning Python-From Novice to Professional"—7	Third Edition
(2) Peter M	Morgan, Data Analysis from Scratch with Python, AI Sciences	
. ,	B. Downey, "Think Python: How to Think Like a Computer Scientist"	', 2nd
	pdated for Python 3, Shroff/O'Reilly Publishers, 2016	
	l Grinberg, Developing Web applications with python, OREILLY	
Referen	ce Books	
(1) Dusty	Phillips, Python 3 Object-oriented Programming - Second Edition, O'	Reilly
(2) Burkh	ard Meier, Python GUI Programming Cookbook - Third ,Packt	
(3) DOUC	G HELLMANN, THE PYTHON 3 STANDARD LIBRARY BY EXA	MPLE, :Pytl
3 Stan Lib	or Exam _2 (Developer's Library) 1st Edition, Kindle Edition.	
(4) Kenne 2012.	th A. Lambert, —Fundamentals of Python: First ProgramsI, CENGA	GE Learning
E-books	& E-Contents:	
• / -	www.pdfdrive.com/a-python-book-beginning-python-advanced-python-and- 125280.html	python-
(2)https://v e9236005.l	www.pdfdrive.com/a-python-book-beginning-python-advanced-python-and- html	python-
(3)https://v	www.pdfdrive.com/learn-python-in-one-day-and-learn-it-well-python-for-be	ginners-with-
-	project-the-only-book-you-need-to-start-coding-in-python-immediately-e183	
–	www.pdfdrive.com/python-programming-python-programming-for-beginner ing-for-intermediates-d180663309.html	s-python-
–	www.pdfdrive.com/python-programming-python-programming-for-beginner	s-python-
	ing-for-intermediates-d180663309.html	
	/realpython.com/tutorials/advanced/	
	ce Links	
	ps://nptel.ac.in/courses/106/106/106106145/	
	ps://www.python-course.eu/python3_inheritance.php	
	ttps://realpython.com/courses/functional-programming-python/	
	tps://realpython.com/python-gui-tkinter/	
Unit-5: htt	tps://nptel.ac.in/courses/106/107/106107220/	

https://nptel.ac.in/courses/106/106/106106212/
https://nptel.ac.in/courses/106/105/106105152/
https://www.youtube.com/watch?v=98YeQpmQeH8
https://www.youtube.com/watch?v=u9x475OGj_U
https://www.youtube.com/watch?v=HFW7eA9wUxY
https://www.youtube.com/watch?v=byHcYRpMgI4
https://www.youtube.com/watch?v=9N6a-VLBa2I
https://www.youtube.com/watch?v=Ta1bAMOMFOI
https://www.youtube.com/watch?v=FsAPt_9Bf3U
https://www.youtube.com/watch?v=LwPTfwlry1s
https://www.youtube.com/watch?v=YXPyB4XeYLA
https://www.youtube.com/watch?v=dVr7r7QgLrk&t=21s
Students may follow Links given below to get certification in course of Advanced python
Link for Certification in Python
https://swayam.gov.in/nd1_noc20_cs36/preview
https://swayam.gov.in/nd1_noc20_cs46/preview

	B.TECH FIRST YEAR(Foreign Language)		
Course Code	AASL0202	L T P	Credit
Course Title	French	200	02
Course objective	:		
1	An introduction to French language and culture learn to understand and articulate in day to situations.		
2	The course provides a foundation in the four basic s (Listening, Speaking, Reading, and Writing) of lang		
Pre-requisite: • The student	should be able to communicate in English.		
	Course Contents / Syllabus		
UNIT-I	Introduction to French	7 H	ours
➤ Basic greeti	ngs and introductions		
-	and similarities between English and French alphabets		
➤ Recognize a	and spell simple words and phrases in French		
-	used nouns and adjectives		
UNIT-II	Vocabulary Building		8 Hours
> Introduce of	neself and others		
➤ Identify, sp	eak and understand the days of the week/ months/ seaso	ns/colour	S
> Speak and v	inderstand simple weather expressions		
> Understand	, ask and answer about date of birth/ important dates and	d age	
➤ Identify, un	derstand and write numbers from $1-60$		
➤ Use the mas rouge/ symp	sculine and feminine of regular nouns and adjectives (pe ba)	etit/ grand	l/ blond/

UNIT-III	Everyday Common Simple Sentences	7 Hours
> In the city/ n	aming places and buildings	
> Means of tra	nsport / basic directions	
➤ Listen to, un	derstand, and respond to everyday conversation	
> Respond to c	uestions about ourselves and family members	
\gg Use the sing	ular and plural of regular nouns (-s).	
UNIT-IV	Reading	10 Hours
> Food, drink,	groceries and meal	
➤ Everyday life	e/ telling time	
> Making appo	ointments	
> Use definite	and indefinite articles.	
UNIT-V	Writing	8 Hours
➤ Fill in a simp	ble form (fiched'inscription/ carte d' identité)	
> Describe pic	tures (Speak and Write)	
➤ Write a short	text on oneself	
Course outcome At the end of the co	ourse students will be able to	
CO 1	Recognize the basic sounds, letters, numbers, words and phrases of French.	
CO 2	Develop basic French vocabulary	
CO 3	Use simple phrases in real life conversations	
CO 4	Read simple sentences	
CO 5	Write simple sentences and fill in a form	

		B.TECH FIRST YEAR (Foreign Langua	ige)		
Course	Code	AASL0203	L	ГР	Credit
Course	urse Title German		2	0 0	02
Cours	e objective:				
1		stand and articulate in day to day real-life situations.	ents will le	arn to	
2		ourse provides a foundation in the four basic skills LSF ing, Reading, and Writing) of language learning.	RW (Listenin	g,	
	equisites: The student sh	ould be able to communicate in basic English.			
		Course Contents / Syllabus			
UNIT	-I	Introduction to German		5 Ho	ours
	Introducing ou Grammar: W o personal prono simple senteno verb conjugati	puns, pe,			
UNIT	-II	Vocabulary building			6 Hours
\geq	hobbies, numbers, mor	uilding – the alphabet, aths, seasons icles, singular and plural forms			
UNIT	-III	Everyday common simple sentences		:	5 Hours
means o Gramm	of transport, bas	indefinite articles;			
UNIT	-IV	Reading			7 Hours
Gramma Everyda Gramm Leisure	r: the accusativ y life, telling tin ar: prepositions activity, celebra	ne, making appointments am, um, von. bis; modal verbs, possessive articles			

UNIT-V	Writing	7 Hours
Grammar: dativ A short text abo Grammar: chang Professions Grammar: perfe Clothes Health a Grammar: perfe	out oneself. ging prepositions ect tense	
Course out At the end of	tcome: the course students will be able to	
CO 1	Understand and be familiar with basic German and the culture	
CO 2	Recognise the foundational vocabulary	
CO 3	Use simple phrases in everyday conversations	
CO 4	Read simple sentences	
CO 5	Write simple sentences	
Text books	8	
1. NETZWEI	RK Deutsch alsFremdsprache A1(Goyal, New Delhi, 2015)	
2. Lagune 1		
3. Schulz-Gri	esbach: Deutsch alsFremdsprache. Grundstufe in einem Band (fo	r Grammar)
Online Pract	tice Material	
1. https:/	//www.goethe.de/en/spr/kup/prf/prf/sd1/ueb.html	
2. <u>http://</u>	/www.deutschkurse.passau.de/JM/images/stories/SKRIPTEN/a1_	skript_gr.pdf
4. <u>https:</u> /	//www.schubert-verlag.de/aufgaben/arbeitsblaetter_a1_z/a1_arbei	itsblaetter_index_z.htm

B.TECH FIRST YEAR (Foreign Language)				
Course Code	AASL0204	L T P	Credit	
Course Title	Japanese	2 00	02	
Course objective:				
1	An introduction to Japanese lan	guage and cu	lture. Students will	
	learn to understand and articulate	0 0		
2	The course provides a foundation (Listening, Speaking, Reading, and			
	be able to communicate in basic Er be keen to learn the language.	nglish.		
Course Contents / Syllal		1		
UNIT-I	Introduction to Japanese	8 Hou	urs	
Introduction to Japanese a	alphabet (Hirangana), phonetics and ves and others,			
 Introduction to Japanese a Introducing ourselv Introduction to Japanese Types of Japanese Basic pronunciation Time and numbers 	alphabet (Hirangana), phonetics and ves and others, anese Language scripts- HIRANGANA, KATAKAI	l pronunciation NA, ing cardinal n	n. umbers,	
 Introduction to Japanese a Introducing oursely Introduction to Japanese Types of Japanese Basic pronunciation Time and numbers Grammar - different simple past tense. 	alphabet (Hirangana), phonetics and ves and others, anese Language scripts- HIRANGANA, KATAKAI n rules – telling and asking the time, count nt types of verbs, nouns – number	l pronunciation NA, ing cardinal n & gender, pro	n. umbers, onouns, present and	
 Introduction to Japanese a Introducing ourselv Introduction to Japanese Types of Japanese Basic pronunciation Time and numbers Grammar - different simple past tense. 	alphabet (Hirangana), phonetics and ves and others, anese Language scripts- HIRANGANA, KATAKAI n rules – telling and asking the time, count nt types of verbs, nouns – number	l pronunciation NA, ing cardinal n & gender, pro	n. umbers,	
 Introduction to Japanese a Introducing ourselv Introduction to Japanese Types of Japanese Basic pronunciation Time and numbers Grammar - different simple past tense. 	alphabet (Hirangana), phonetics and ves and others, anese Language scripts- HIRANGANA, KATAKAI n rules – telling and asking the time, count nt types of verbs, nouns – number Vocabulary building s to answer basic personal question le	l pronunciation NA, ing cardinal n & gender, pro	n. Jumbers, Donouns, present and	

• Cus	stomer and shopk	eeper		
• Ma	king a request			
• Hor	me/ Relatives/ Fr	uits/ Vegetables/Animal	S	
Gra	mmar-Singular	vs. Plural		
	estion formation			
UNIT-IV		Reading		8 Hours
• Tra	nsportation			
• We	ek /Month names	5		
• Sho	opping			
Bas	sic Japanese gran	nmar rules – particles: 7	い(ka), は(wa),の(n	10), と (to), を (o),に
	,も(mo),が(ga)	-		
()	mmar- Present, I	• /		
UNIT-V		Writing		8 Hours
	ite short text on c			
Gramma		bject, object, possessive	,	
	Modal verbs			
~				
Course of	utcome:			
At the end	l of the course stu	idents will be able to		
<u>CO1</u>	1 4 1 4 1	· CT T	1., .,	
CO1	understand the b	pasics of Japanese Langu	lage and its script.	
CO2	recognise the fo	undational vocabulary.		
CO3	use simple phra	ses in everyday conversa	tions.	
CO4	read simple sent	ences.		
CO5	write simple ser	itences		
Reference	es:			
•]	https://www.youtube.	com/watch?v=6p9I1_j0zjc&ab	_channel=LearnJapanesewit	hJapanesePod101.com
•]	https://books.google.c	o.in/books?id=4nHnMa4ZwM	C&newbks=0&printsec=fro	ontcover&dqminna+no+nih
	ongo&hl=en&source=	=newbks_fb&redir_esc=y#v=o	nepage&q=minna%20no%2	Onihongo&f=false

		B. TECH FIRST YEAR			
Course Code		e Code AAS0251A		LTP	Credit
Cours	e Title	ENGINEERING PHYSICS LAB		002	1
		Suggested list of Experime	ent		
Sr.	Name of E	Experiment			
No.	(Minimum	Ten experiments should be performed))		
1	To determine	e the wavelength of monochromatic light by N	Newton's ring.		
2		e the focal length of two lenses by nodal slide nbination of two lenses.	e and to verify the	formula	for the focal
3	To determine	e the specific rotation of cane sugar solution u	sing Polarimeter.		
4		e the wavelength of spectral lines using plane		_	
5		e the specific resistance of a given wire using	•	U	
6	-	e variation of magnetic field along the axis on the the radius of the coil.	of current carryin	g - Circu	lar coil and
7	To verify Ste	efan's Law by electrical method.			
8	To Study the	e Hall effect and determine the Hall Coeffic	ient, carrier densi	ity and m	nobility of a
	_	onductor material using hall effect setup.			
9	To determine	e the energy band gap of a given semiconduct	or material.		
10		the coefficient of viscosity of a liquid.			
11	Calibration of	of a voltmeter using potentiometer.			
12	Calibration of	f a ammeter using potentiometer.			
13	To determine	e E.C.E. of copper using Tangent or Helmholt	tz galvanometer.		
14	To determine method.	e the magnetic susceptibility of a ferromagnet	tic salt (FeCl ₃) by	using Qu	iincke's tube
15	To study the ferromagneti	e hysteresis curve and then to estimate the ic material.	retentively and c	coercivity	of a given
16	To determine	e the angle of divergence of laser beam using	He-Ne Laser.		
17	To determine	e the wavelength of laser using diffraction gra	ting.		
18	To determine	e the numerical aperture of optical fiber.			

Lab C	Lab Course Outcome: After completion of this course students willbeable to:			
CO 1	Apply the practical knowledge of the phenomenon of interference, diffraction and polarization.			
CO 2	Understand energy band gap and resistivity.			
CO 3	Develop the measurement techniques of magnetism.			
CO 4	Analyze the flow of liquids.			
Link:				
Unit 1	https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH- yAf_n1O6&index=11			
Unit 2	http://nptel.ac.in/ , http://www.mit.edu/			
Unit 3	https://www.youtube.com/watch?v=bWTxf5dSUBE ,http://ocw.mit.edu/ http://nptel.ac.in/			
Unit 4	https://www.youtube.com/watch?v=6vyYRnLvnqI			
Unit 5	https://www.youtube.com/watch?v=0GD-18Jqnro,			
	https://www.youtube.com/watch?v=dQhhcgn8YZo			

Lab Co	de ACSE0252	LTP	Credit	
Lab Tit	Lab TitleProblem Solving using Advanced Python Lab002		1	
Course	outcome: At the end of course, the student will be abl	e to		
CO 1	Write programs to create classes and instances in python		K ₁ , K ₃	
CO 2 write programs to Implement concept of inheritance and polymorphism using python			K ₂ , K ₃	
CO 3 Write programs using functional programming in python		K ₄		
CO 4	write programs to create GUI based Python application		K ₃ , K ₄	
CO 5	Developing real life applications using python libraries to solve problems	real world	K4, K6	

List of Experiment :

S.No.	Name of Experiment Class and Methods			
1	Python program to demonstrate instantiating a class.			
2	Python program to demonstrate use of class method and static method			
3	Python program to implement constructors.			
4	Python program to show that the variables with a value assigned in the class			
	declaration, are class variables and variables inside methods and constructors are			
	instance variables.			
5	Python program to create Bank-account class with deposit, withdraw function			
	Inheritance			
6	Python program to demonstrate single inheritance			
7	Python program to demonstrate multilevel inheritance			
8	Python program to demonstrate multiple inheritance			
9	Python program to demonstrate hierarchical inheritance			
10	Python program to demonstrate hybrid inheritance			
	Polymorphism			
11	Python program to demonstrate in-built polymorphic function			
12	Python program to demonstrate user defined polymorphic functions			
13	Python program to demonstrate method overriding			
	Functional Programming			
14	Python program to demonstrate working of map			

15	Python program to demonstrate working of filter					
16	Python program to demonstrate working of reduce					
17	Python program to demonstrate immutable data types					
18	Python program to demonstrate Monkey Patching in Python					
19	9 Python program to demonstrate decorators with parameters in python					
20	Python program to demonstrate conditional decorators					
21	Python program to demonstrate nested decorators					
22	Python program to demonstrate chain multiple decorators					
23	Python program to demonstrate use of generators					
24	Python program to demonstrate working of iterators					
25	Write a Python program to create a table and insert some records in that table. Finally					
	selects all rows from the table and display the records.					
	GUI Programming					
26	Python Program to understand working of various Tkinter widgets					
27	Create a Distance-time GUI calculator using Tkinter					
28	Write a NumPy program to calculate the difference between the maximum and the					
	minimum values of a given array along the second axis.					
29	Write a Python program to create a 2-D array with ones on the diagonal and zeros					
	elsewhere. Now convert the NumPy array to a SciPy sparse matrix in CSR format.					
30	Write a Python program to add, subtract, multiple and divide two Pandas Series.					
31	Write a program to Create Your Plot using python. Also add and delete axes.					
32	Write a program to plot data using seaborn and show the plot.					

Course CodeAME0252Course TitleEngineeri		AME0252	2 L	TP (Credit
		Engineeri	ng Graphics & Solid Modelling 00)3 1	1.5
Cour	se objecti	ive:			
1	To famili	arize the stu	adents with the concepts of Engineering Graphics and pro-	ovide	
	understar	ding of the	drafting, principles, instruments, standards, conventions	of drawings	5,
	scales, cu	rves etc.			
2			e about projections of point, lines and planes.		
3			s able tounderstandorthographic projections of simple sol	lids and the	ir
		=	ment of curves for lateral surfaces		
4			le to prepare engineering drawing using CAD software.		
5	To make	them capab	le to prepare engineering drawing using CREO software.		
Pre-r	equisites	Knowledg	e of basic geometry.		
			Course Contents / Syllabus		
UNIT	Г-І		Introduction	6	5 hours
Introdu	uction to er	igineering g	raphics, Convention for Lines and their uses, Symbols f	or different	materials
and su	rface finish	, Methods c	of dimensioning, Scales, Cycloidal curves and involutes.	(1 Sheet)	
UNIT	Γ-ΙΙ		Projection of points, lines and planes		6 hours
Projec	tion of poir	ts, lines and	l planes. (1 Sheet)		
UNIT	Γ -III		Projection of solids and Sections of solids and	d	6 hours
			Development of surfaces		
Orthog	graphic pro	jections of 1	regular solids. Projection of section of regular solids. De	evelopment	of lateral
surface	es of regula	r solids(2sh	eet)	_	
UNIT	Γ-IV		Introduction to CAD		9 hours
Introdu	uction to C	omputer Aid	ded Drawing: Drawing practice using various commands	(Array, blo	ock, scale
fillet, o	chamfer, ha	tch etc.), A	bsolute coordinate systems, Polar coordinate systems an	d relative of	coordinate
system	ns, Drawing	g practice	using dimensioning, Drawing of 2D planes; circle, p	olygons, el	llipse etc.
Drawi	ng practice	using 3D p	primitives; Drawing of cone Prism, pyramid etc.; Create	solids using	g extrude
	e command	s, Working	drawings of various mechanical systems. (4 Sheets)		
revolv			Introduction to CREO		9 hours
revolv UNIT	Г-V			. associativ	ve, feature
UNI		REO Param	etric, features of CREO, concepts- modeling, parametric	, associati	
UNIT Introdu	uction to C		netric, features of CREO, concepts- modeling, parametric nce lines, center lines, circle, arc, ellipse, rectangle, slots	-	etc, sketch
UNIT Introdu based,	uction to C sketch enti	ties- inferer		, polygon, e	
UNIT Introdu based,	uction to C sketch enti fillet, cham	ties- inferer	nce lines, center lines, circle, arc, ellipse, rectangle, slots	, polygon, e	
UNIT Introdu based, tools- (4 She	uction to C sketch enti fillet, cham ets)	ties- inferer fer, offset, 1	nce lines, center lines, circle, arc, ellipse, rectangle, slots, trim, extend, split, mirror, move, copy, rotate, scale, stret	, polygon, e	
UNIT Introdu based, tools- (4 She	uction to C sketch enti fillet, cham ets) se outcon	ties- inferer fer, offset, t ne: Af	nce lines, center lines, circle, arc, ellipse, rectangle, slots	, polygon, e tch etc. dim	

CO 2	Draw and develop the projections of points lines and planes.	K ₁ , K ₂		
CO 3	Draw orthographic projection of solids and their sections and draw the lateral surfaces.	K ₃		
CO 4	4 Apply CAD software to draw 2D and 3D drawing.			
CO 5	Apply CREO software to draw 2D and 3D drawing.	K ₂ , K ₃		
Text bool	۲S	I		
A Textbool	k of Engineering Drawing- Dr R.K. Dhawan, S.Chand Publication, Revised edition	-2015		
Engineerin	g Graphics and Design- P.S. Gill, Katson books, Revised edition-2018			
Reference	e Books			
(1) Engine	ering Drawing - N.D. Bhatt & V.M. Panchal, 48thedition, 2005- Charotar Publish	ing House,		
Gujarat.		C ,		
(2) Compu	ter Aided Engineering Drawing - S. Trymbaka Murthy, - I.K. International Publish	ning House		
Pvt. Ltd., N	ew Delhi, 3 rd revised edition-2006			
Video lin	ks			
Unit 1				
https://www	v.youtube.com/watch?v=uojN7SOHPBw			
https://youtu	.be/w2-a_EzO4-Q			
https://www	v.youtube.com/watch?v=n9iQcttWHAo			
Unit 2				
https://www	v.youtube.com/watch?v=fK4h5gM73w8&list=PLIhUrsYr8yHxEk_Jv8yOatnDcr6KY	/K3j		
https://www	v.youtube.com/watch?v=FtugLo9DMw8&list=PLIhUrsYr8yHz_FkG5tGWXaNbIxV	'cibQvV		
https://www	v.youtube.com/watch?v=AoNIOxnxDO0&list=PLIhUrsYr8yHx7TVB51jN3HZVyW	3R6RiBg		
Unit 3				
· ·	youtube.com/watch?v=YV4RZNQ2yB8&list=PLIhUrsYr8yHxARPzEFz1nXgt8j6xF_tEm			
-	youtube.com/watch?v=vlYAGkWmiW8&list=PLIhUrsYr8yHwdB96ft6c0Uwc4SDCLuG1v			
· ·	youtube.com/watch?v=Vo9LC9d7FQA&list=PLIhUrsYr8yHxVky7bfrnbRcdXcHjT_K83&	index=1		
youtube.com	/watch?v=t9gepMkey0w&list=PLItCiRV7ABU4SUL7gYOSiwmMlN1tgQl&index=2			
Unit 4				
-	v.youtube.com/watch?v=ifM0JQ6-Nus			
-	v.youtube.com/watch?v=tHrfxjgFQt8			
1	v.youtube.com/watch?v=c1kGuiYEHh0			
-	v.youtube.com/watch?v=UKpCFYWK7q4&t=14s			
-	v.youtube.com/watch?v=R8Hd7DUZcF0			
-	v.youtube.com/watch?v=rzXWDgfcxec			
-	v.youtube.com/watch?v=QnN8A1mIUYY			
-	v.youtube.com/watch?v=Gx3yy5lKumA			
2	youtube.com/watch?v=tnylweRokkw			
Unit 5				
https://www	v.youtube.com/watch?v=sVWsUS_7V6s			

https://www.youtube.com/watch?v=KsMil9ND5E8 https://www.youtube.com/watch?v=GGxmUWBoqcg

			B. TECH FIRST YEAR				
Course CodeAME025Course TitleEngineer		AME025	2	LTP	Credit		
		Engineering Graphics & Solid Modelling		003	1.5		
			Suggested list of Experiment		1		
Sheet No.	Exp	eriment	Name of Experiment				
	No.						
1.	1 To draw plain scale and diagonal scale.						
2.	1		To draw projection of points, lines and planes.				
3.	1		To draw orthographic projection of regular so				
	2		To draw section of regular solids.				
4.	1		To draw development of lateral surfaces of si	mple solids.			
	2		To draw cycloidal or involute curve.				
5.	1		Initiating the Graphics Package; Setting the	paper size, spac	e; setting the		
			limits, units; use of snap and grid commands i	n AutoCAD			
	1		To create 2D view of a center pin with given dimensions in AutoCAD.				
6.	2		To create 2D view of abase plate with given dimensions in AutoCAD.				
	3		To create 2D view of a bush with given dimen	sions in AutoCA	D.		
7.	1		To create 3D view of a washer in AutoCAD.				
/.	2		To create 3D view of a guide pin in AutoCAD).			
	3		To create 3D view of a lock nut in AutoCAD.				
8.	1		To create drawings of given machine compon-	ents in AutoCAI) .		
9.	1		To understand basic of CREO				
	2		To understand basic sketching in CREO				
10.	1		To understand basic par modelling in CREO	using different o	ptions aiding		
			constructions like extrude, hole, ribs, shell etc				
11.	1		Introduction to CREO Parametric 'sketch feat	ures' (revolve, s	weep, helical		
			sweep, sweep blend etc.				
12.	1		Introduction to CREO Parametric 'edit featur	es' (group, copy	, mirror tool)		
			and 'place features' (holes, shells and drafts).				