Printed Page:-

Subject Code:- AME0304 Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech.

SEM: III - LATERAL / LEFT OVER THEORY EXAMINATION (2021 - 2022) (ONLINE)

Subject: Basic Thermodynamics

Time: 02:00 Hours

General Instructions:

- 1. All questions are compulsory. It comprises of two Sections A and B.
- Section A Question No- 1 has 35 objective type questions carrying 2 marks each.
- Section B Question No- 2 has 12 subjective type questions carrying 3 marks each. You have to attempt any 10 out of 12 question.
- No sheet should be left blank. Any written material after a Blank sheet will not be evaluated/checked.

1. Attempt ALL parts:-

1.1.a A closed thermodynamic system is one in which

- (a) There is no energy or mass transfer across the boundary,
- (b) There is no mass transfer, but energy transfer exists.
- (c) There is no energy transfer, but mass transfer exists.
- (d) Both energy and mass transfer take place across the boundary, but the mass transfer is controlled by valves.

1.1.b Thermodynamic work is the product of

- (a) Two intensive properties
- (b) Two extensive properties
- (c) An intensive property and change in an extensive property
- (d) An extensive property and change in an intensive property
- 1.1.c Work done by a system is taken to be
 - (a) Zero
 - (b) Positive
 - (c) Negative
 - (d) Varies according to condition
- 1.1.d Constant pressure process is also known as
 - (a) Isochoric process
 - (b) Isothermal process
 - (c) Isentropic process
 - (d) Isobaric process
- 1.1.e By first law of thermodynamics,
 - (a) $\mathbf{Q} = \mathbf{\Delta} \mathbf{E} \mathbf{W}$
 - (b) $\mathbf{Q} = -\mathbf{A}\mathbf{E} \mathbf{W}$
 - (c) $\mathbf{Q} = \mathbf{A}\mathbf{E} + \mathbf{W}$
 - (d) $\mathbf{Q} = -\mathbf{A}\mathbf{E} + \mathbf{W}$

1.1.f In a constant volume process, internal energy change is equal to

- (a) heat transferred
- (b) work done

Max. Marks: 100

 $35 \ge 2 = 70$

1

1

1

1

1

1

ore

- (d) maximum
- 1.1.g An isolated system is a special type of closed system that does not interact in any way with 1 its surroundings.

(a) True

(b) False

1.2.a Two blocks which are at different states are brought into contact with each other and allowed 1 to reach a final state of thermal equilibrium. The final temperature attained is specified by the

1

1

1

1

1

1

(a) Zeroth Lav	v of Thern	nodynamics
		2

- (b) First Law of Thermodynamics
- (c) Second Law of Thermodynamics
- (d) Third law of thermodynamics
- 1.2.b The processes of a Carnot cycle are
 - (a) two isothermals and two isentropics
 - (b) two isobarics and two isentropics
 - (c) two isothermals and two isobarics
 - (d) two adiabatic and two constant volume
- 1.2.c In the differential form, the SFEE becomes
 - (a) dQ + dW = dh + VdV + gdZ
 - (b) dQ dW = dh + VdV + gdZ
 - (c) dQ + dW = dh VdV gdZ
 - (d) dQ dW = dh VdV + gdZ
- 1.2.d The steady flow energy equation is applied to which of the following processes?
 - (a) pipe line flows
 - (b) heat transfer processes
 - (c) combustion processes
 - (d) all of the mentioned
- 1.2.e Carnot cycle is
 - (a) a reversible cycle
 - (b) an irreversible cycle
 - (c) practical cycle
 - (d) real cycle

1.2.f The low temperature reservoir of the heat reservoirs is known as

- (a) Source reservoir
- (b) Heel reservoir
- (c) Toe reservoir
- (d) Sink reservoir
- 1.2.g The first law of thermodynamics for steady flow accounts for all energy entering and leaving 1 a control volume.
 - (a) True
 - (b) False
- 1.3.a Which of the following is the correct criteria for a spontaneous process?
 - (a) $\Delta S_{system} \Delta S_{surroundings} > 0$
 - (b) $\triangle S_{surroundings} > 0$ only
 - (c) $\triangle S_{system} + \triangle S_{surroundings} > 0$
 - (d) $\triangle S_{system} > 0$ only

1.3.b	Higher the entropy increase of the universe then higher will be	1
	(a) Irreversibility	
	(b) Reversibility	
	(c) Both a and b	
	(d) None of the mentioned	
1.3.c	Change in entropy is zero during	1
	(a) Constant pressure process	
	(b) Constant volume process	
	(c) Constant temperature process	
101	(d) Reversible adiabatic process	1
1.3.d	of the system?	1
	(a) molecular disorder increases	
	(b) molecular disorder decreases	
	(c) no change on molecular system	
	(d) none of the mentioned	
1.3.e	Availability function for a closed system is given by	1
	(a) u - pv - Ts	
	(b) $u + pv + Ts$	
	(c) $\mathbf{u} - \mathbf{p}\mathbf{v} + \mathbf{T}\mathbf{s}$	
1.0.0	(d) u + pv - Ts	
1.3.f	Third law of thermodynamics is helpful in	I
	(a) Prediction of the extent of a chemical reaction	
	(b) Calculating absolute entropies of substances at different temperature	
	(c) Evaluating entropy changes of chemical reaction (d) Both h and c	
1 2 a	(d) Both b and c The equation $d\Omega = TdS$ is true only for a irreversible process	1
1.3.g	The equation $dQ = 1 dS$ is true only for a inteversible process.	1
	(a) file (b) False	
140	Superheated vapour behaves	1
1. 4 .a	(a) Exactly as gos	1
	(a) Exactly as gas (b) As steem	
	(c) As ordinary vapour	
	(d) Approximately as a gas	
14b	In isentropic process	1
11110	(a) $W = 2(u_2 - u_1)$	•
	(a) $W = 2(a_2 - u_1)^2$ (b) $W = (u_2 - u_1)^2$	
	(c) $W = (u_2 - u_1)$ (c) $W = (u_2 - u_1)$	
	(d) $W = (u_2 - u_1) / 2$	
1.4.c	In Rankine cycle the work output from the turbine is given by	1
	(a) change of internal energy between inlet and outlet	
	(b) change of enthalpy between inlet and outlet	
	(c) change of entropy between inlet and outlet	
	(d) change of temperature between inlet and outlet	
1.4.d	For water, as temperature increases, volume always increases.	1
	(a) True	

	(b) False	
1.4.e	The triple point is a line on the p-V diagram, where all the three phases, solid, liquid and gas exist.	1
	(a) True	
	(b) False	
1.4.f	Saturation temperature is a function of pressure.	1
	(a) True	
	(b) False	
1.4.g	In the Rankine cycle, working fluid is water only.	1
	(a) True	
	(b) False	
1.5.a	For a given compression ratio the work output of Otto cycle is	1
	(a) increases with increase in r	
	(b) decreases with increase in r	
	(c) is not affected	
	(d) none of the above	
1.5.b	Clausius Clapeyron equation applies to the process	1
	(a) Sublimation	
	(b) Melting	
	(c) Vaporisation	
	(d) All of he mentioned	
1.5.c	The intake and exhaust processes are not considered in the p-V diagram of Otto cycle.	1
	(a) True	
	(b) False	
1.5.d	In SI engines air-fuel mixture is compressed.	1
	(a) True	
	(b) False	
1.5.e	In CI engines air-fuel mixture is compressed.	1
	(a) True	
	(b) False	
1.5.f	When an ideal gas is made to undergo a Joule-Kelvin expansion, i.e., throttling, there is no change in temperature.	1
	(a) True	
	(b) False	
1.5.g	dU = TdS - pdV	1
	(a) True	
	(b) False	
	$\underline{SECTION B} 10 X 3 = 30$	
2. Answer	any <u>TEN</u> of the following:-	
2.1.a	What is PMM1?	2
2.1.b	Why PMM1 is impossible?	2
2.2.a	Define COP. State its SI unit.	2
2.2.b	Explain the terms 'source and 'sink'.	2
2.2.c	Why PMM2 is impossible?	2
2.3.a	When does the system become dead?	2

Define the second law efficiency.	2
Why and when is exergy completely destroyed?	2
Discuss different zones on T-V diagram for steam.	2
What do you understand by "Quality of steam is 0.85"?	2
What does the area enclosed by the cycle represent on a P-v diagram? Define it.	2
Draw the p-V and T-s diagram of diesel cycle.	2
	Define the second law efficiency. Why and when is exergy completely destroyed? Discuss different zones on T–V diagram for steam. What do you understand by " Quality of steam is 0.85"? What does the area enclosed by the cycle represent on a P-v diagram? Define it. Draw the p-V and T-s diagram of diesel cycle.