Printed Page:-

Subject Code:- ACSE0305 Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) B.Tech. SEM: III - THEORY EXAMINATION (2021 - 2022) (ONLINE) Subject: Computer Organization & Architecture Time: 02:00 Hours Max. Marks: 100 General Instructions: 1. All questions are compulsory. It comprises of two Sections A and B. • Section A - Question No- 1 has 35 objective type questions carrying 2 marks each. • Section B - Question No- 2 has 12 subjective type questions carrying 3 marks each. You have to attempt any 10 out of 12 question. • No sheet should be left blank. Any written material after a Blank sheet will not be evaluated/checked. $35 \ge 2 = 70$ SECTION A 1. Attempt ALL parts:-Brain of computer is (CO1) 1.1.a 1 (a) Control unit (b) Arithmetic and Logic unit (c) Central Processing Unit (d) Memory The functions of execution and sequencing are performed by using _____ 1 1.1.b (a) Input Signals (b) Output Signals (c) Control Signals (d) CPU 1.1.c Which unit is responsible for converting the data received from the user into a computer 1 understandable format?(CO1) (a) Memory Unit (b) Arithmetic & Logic Unit (c) Output Unit (d) Input Unit 1.1.d The third state of a Three-state Buffer is 1 (a) 0(b) High Impedance (c) 1 (d) Short circuit 1.1.e Saving data and instructions to make them readily available is the job of ______ 1 (a) Cache Unit (b) Storage Unit (c) Input Unit (d) Output Unit 1.1.f The addressing mode in which the operands are in registors that reside within the CPU. 1

- (a) Register addressing mode
- (b) Index addressing mode

	(c) Relative addressing mode	
11σ	(d) Implied addressing mode The addressing mode in which the operands are specified implicitly in the instruction	1
1.1.g	(a) Indirect addressing mode	1
	(a) Induced addressing mode	
	(c) Relative addressing mode	
	(d) Implied addressing mode	
1.2.a	The 'heart' of the processor which performs many different operations	1
	(a) Arithmetic and logic unit	1
	(a) Antimicite and logic unit	
	(c) Control Unit	
	(d) Memory	
1.2.b	When we perform subtraction on -7 and -5 the answer in 2's complement form is	1
	(a) 11110	_
	(b) 1110	
	(c) 1010	
	(d) 1000	
1.2.c	The sign magnitude representation of -9 is	1
	(a) 10000	
	(b) 10010	
	(c) 10111	
	(d) 11011	
1.2.d	is used for binary multiplication?	1
	(a) Restoring Multiplication	
	(b) Booth's Algorithm	
	(c) Pascal's Rule	
	(d) Digit-by-digit multiplication	
1.2.e	Carry lookahead adder uses the concepts of (CO2)	1
	(a) Inverting the inputs	
	(b) Complementing the outputs	
	(c) Generating and propagating carries	
	(d) None of the mentioned	
1.2.f	IEEE stands for	1
	(a) Instantaneous Election Electrical Engineering	
	(b) Institute of Emerging Electrical Engineers	
	(c) Institute of Emerging Electronic Engineers	
1.0	(d) Institute of Electrical and electronics engineers	1
1.2.g	IEEE 754 representation for	1
	(a) Floating Point No.	
1.2 -	(b) Integer no.	
	(c) Binary no. (d) Octol no	
	(d) Octai IIO. Two important fields of an instruction are $(CO2)$	1
1.J.ä	(c) Operate	1
	(a) Opcode (b) Operand	
	(c) mode	
	(c) mode	

	(d) Both 1 & 2	
1.3.b	Group of binary bits(0&1) is known as	1
	(a) Binary code	
	(b) Digit code	
	(c) Symbolic representation	
	(d) None of these	
1.3.c	Pipe-lining is a unique feature of	1
	(a) CISC	
	(b) RISC	
	(c) ISA	
	(d) ANNA	
1.3.d	In micro-programmed approach, the signals are generated by	1
	(a) Machine instructions	
	(b) System programs	
	(c) Utility tools	
1.0	(d) None of the mentioned	
1.3.e	Highly encoded schemes that use compact codes to specify a small number of functions in each micro instruction is	1
	(a) Horizontal organisation	
	(b) Vertical organisation	
	(c) Diagonal organisation	
1.0.0	(d) None of the mentioned	
1.3.f	register holds the Next instruction to be executed	I
	(a) TR	
	(b) AR	
	(c) PC	
12~	(d) None The processing speed of a computer depends on the	1
1.3.g	(a) Clock aread	1
	(a) Clock speed (b) Speed	
	(c) Booting	
	(d) None	
1.4.a	What is true about memory unit	1
	(a) A memory unit is the collection of storage units or devices together	_
	(b) The memory unit stores the binary information in the form of bits.	
	(c) 1& 2	
	(d) None of the above	
1.4.b	When power is switched off which memory loses its data	1
	(a) Non-Volatile Memory	
	(b) Volatile Memory	
	(c) Both A and B	
	(d) None of the above	
1.4.c	What is the formula for Hit Ratio? (CO4)	1
	(a) Hit/(Hit + Miss)	
	(b) Miss/(Hit + Miss)	
	(c) (Hit + Miss)/Miss	

	(d) (Hit + Miss)/Hit	
1.4.d	Which of the following is correct example for Auxiliary Memory	1
	(a) Magnetic disks	
	(b) Tapes	
	(c) Flash memory	
	(d) Both 1 and 2	
1.4.e	2k* 8 ROM chips which are required to built a 16K*8 memory system are of number	1
	(a) 2	
	(b) 4	
	(c) 8	
	(d) 16	
1.4.f	Address bits needed to select all memory locations in 16K * 1 RAM are (CO4)	1
	(a) 8	
	(b) 10	
	(c) 14 (d) 16	
1 4 -		1
1.4.g	(c) Cracks	1
	(a) Cache	
	(b) virtual memory (c) $\mathbf{R} \mathbf{A} \mathbf{M}$	
	(d) ROM	
1.5.a	In memory-mapped I/O (CO5)	1
	(a) The I/O devices have a separate address space	-
	(b) A part of the memory is specifically set aside for the I/O operation	
	(c) The I/O devices and the memory share the same address space	
	(d) The memory and I/O devices have an associated address space	
1.5.b	The input is used by the DMA controller to request the CPU to relinquish control of	1
	the buses.	
	(a) Bus Grant	
	(b) Bus request	
	(c) Burst Transfer	
	(d) Data Input	
1.5.c	A command is issued to activate the peripheral and to inform it what to do.	1
	(a) Control	
	(b) Status	
	(c) Data output	
154	(d) Data input	1
1.3.0	(a) Devellel	1
	(a) Faraner (b) Synchronous	
	(c) Asynchronous	
	(d) Serial	
1.5.e	In data transmission, each bit of the message has its own path and the total message	1
	is transmitted at the same time.	-
	(a) Parallel	
	(b) Serial	

	(c) Asynchronous	
	(d) None	
1.5.f	In Daisy Chaining Priority, the device with the highest priority is placed at the	1
	(a) Last Position	
	(b) Can be placed anywhere	
	(c) First Position	
	(d) Depend on device	
1.5.g	In transmission, the two units share a common clock frequency and bits are transmitted continuously at the rate dictated by the clock pulses.	1
	(a) Parallel	
	(b) Serial	
	(c) Synchronous	
	(d) Asynchronous	
	$\underline{\text{SECTION B}} \qquad 10 \text{ X 3} = 30$	
2. Answe	er any <u>TEN</u> of the following:-	
2.1.a	A digital computer has a common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers. a. How many multiplexers are there in the bus? b. What size of multiplexers are needed?	2
2.1.b	Write the sequence of microoperation for implementation of POP operation in register stack.	2
2.2.a	What is the value of 11010010 after circular shift left and right?	2
2.2.b	Explain the hardware diagram of signed magnitude multiplication algorithm	2
2.2.c	Explain the Advantages and Disadvantages of CLA.	2
2.3.a	What are the differences between the hardwired control organization and micro programmed Control organization.	2
2.3.b	Define Memory address register.(CO3)	2
2.3.c	Draw the flow of Instruction cycle.	2
2.4.a	Define tag in cache mapping.(CO4)	2
2.4.b	Define role of key register in associative memory.	2
2.5.a	Explain the term cycle stealing and burst transfer. (CO5)	2
2.5.b	Why are the read and write control lines in DMA bidirectional?	2