Printed page: 02....

Subject Code: AMTVL0114

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY ,GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) MASTER OF TECHNOLOGY (M. Tech) (SEM: 1st Theory Examination (2020-2021) SUBJECT NAME: MICROCHIP FABRICATION TECHNOLOGY Max. Marks: 70

Time: 3 Hours

General Instructions:

- > All questions are compulsory. Answers should be brief and to the point.
- ▶ This Question paper consists of02...pages & ...8.......questions.
- ▶ It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- \succ Section A Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type -I questions with external choice carrying 4marks each. You need to attempt any five out of seven questions given.
- Section C Question No. 48 are Long answer type -II (within unit choice) questions carrying 7 marks each. You need to attempt any one part <u>a or b.</u>
- Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION - A

1.	An a. b.	 swer all the parts- Numbers of atoms found inside a unit cell of a body centred cubic crystal are Wet Oxidation is preferred to grow [i] Thin oxidation layer [ii] Thick oxidation layer 	[5x1=5] (1) (1)	CO CO1 CO2
		[iii] In the low pressure conditions [iv] In the low temperature conditions		
	c.	Which lithography technique will offer higher resolution [i] Optical [ii] Ion beam [iii] x-ray	(1)	CO3
		[iv] electron beam		
	d.	Which of the following process is not used for adding impurity?	(1)	CO 4
		[i] Doping		
		[ii] Diffusion [iii] Ion Implantation		
		[iv] Metallization		
	e.	The typical thickness of poly-silicon layer is	(1)	CO5
	с.	[i] In the range of 1 to 5 nm	(1)	000
		[ii] In the range of 10 to 50 nm		
		[iii] In the range of 100 to 200 nm		
		[iv] In the range of 500 to 600 nm		
2.	Answer all the parts-			CO
	a.	Why crystal growth in {111} direction preferred in silicon?	(2)	CO 1
	b.	Discuss the significance of diffraction limited geometry in photolithography	(2)	CO 2
	c.	Compare Dry Etching with Chemical Wet Etching.	(2)	CO 3
	d.	Calculate the total amount of dopants introduced after boron pre-deposition performed	(2)	CO 4
		at 950 ^o C for 30 minutes in a natural ambient. Assume substrate is n-type silicon with $N_D=1.8 \times 10^{16} \text{ cm}^{-3}$ and boron surface concentration is $C_s=1.8 \times 10^{20} \text{ cm}^{-3}$.		
	e.	What is meant by epitaxy? What are the advantages?	(2)	CO 5

Subject Code: AMTVL0114

		SECTION P				
3.	Δn	<u>SECTION – B</u> swer any five of the following-	[5x4=20]	CO		
5.	a.	The seed crystal used in the Czochralski process is usually necked down to a small diameter (6.6mm) as a means to initiate dislocation free growth. If the critical end strength of silicon is $3x10^6$ gm/cm ² , calculate the maximum length of silicon ingot 200 mm in diameter that can be supported by such a seed. Density of Si is 2.33gm/cm ³	(4)	CO 1		
	b.	Explain the significance of Low dielectric materials. Enlist the names for few of the Low-K materials. And also explain the application associated with them	(4)	CO 2		
	c.	Explain the process of Optical Lithography.	(4)	CO 3		
	d.	Explain the ion stopping mechanisms in ion implantation? What are the various ways to reduce the effect of channelling in ion implantation process?	(4)	CO 4		
	e.	How are the ICs classified? Give example.	(4)	CO 5		
	f.	Explain why a shaped beam promises higher throughput than a Gaussian beam in e- beam lithography.	(4)	CO 3		
	g.	Explain the process of rapid thermal annealing (RTA). Discuss its significance in IC processing.	(4)	CO 5		
		<u>SECTION – C</u>				
4		swer any <u>one of the following-</u>	[5×7=35]	CO		
	a.	We use the float zone process to purify a silicon ingot that contains a uniform Ga concentration of 5×10^{15} cm ⁻³ . One pass is made with a molten zone of 5 cm long. Over what distant is the resulting Ga concentration below 5×10^{15} cm ⁻³ ?	(7)	CO 1		
	b.	Derive the following relation $x^2+Ax = B(t+\tau)$	(7)	CO 1		
_		 Where x : oxide thickness after an oxidizing time 't' τ: time co-ordinate shift to account for the initial oxide layer B: parabolic constant, B/A: linear constant 				
5.	An: a.	 swer any <u>one</u> of the following- Explain and discuss the significance of: (i) Liquid Encapsulated Czochralski (LEC) (ii) Equilibrium segregation coefficient. 	(7)	CO 2		
		Explain the various steps of basic wafer fabrication?	(7)	CO 2		
6.	An: a.	swer any <u>one</u> of the following- How does the etching of the following take place? (i)Silicon dioxide (ii) Silicon Nitride	(7)	CO 3		
7.	b. Ans	Explain in detail various steps of patterning process. swer any <u>one of the following-</u>	(7)	CO 3		
	a.	What is Plasma enhanced CVD systems? Explain the technique in detail.	(7)	CO 4		
	b.	For Boron diffusion in silicon at 1000° C, the surface concentration is maintained at 10^{19} cm ⁻³ and the diffusion time is 1 hour. Find Q(t) (total no. of atoms per unit area)and the gradient at x=0 and at a location where the dopant concentration reaches 10^{15} cm ⁻³ ?	(7)	CO 4		
8.	An	swer any <u>one</u> of the following-				
	a.	Write a short note on any one of the following	(7)	CO 5		
	_	(i) Physical Vapour Deposition (ii) Vacuum Deposition		ac -		
	b.	How monolithic ICs realized? How does integration of the following components take place?	(7)	CO 5		
		(i) Resistors (ii) Capacitors				