Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow) <u>M. Tech</u>

(SEM: -I, THEORY EXAMINATION (2020-2021)

Subject Name: Advanced Data Structures and Algorithms

Time: 3 Hours

Max. Marks:70

General Instructions:

- > All questions are compulsory. Answers should be brief and to the point.
- > This Question paper consists of 02 pages & 08questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type -I question with external choice carrying 4 marks each. You need to attempt any five out of seven questions given.
- Section C Question No. 4-8 are Long answer type –II (within unit choice) questions carrying 7 marks each. You need to attempt any one part <u>a or b.</u>
- Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

1.	Ans	wer <u>all</u> the parts-	[5x1=5]	CO
	a.	Links between two nodes is termed as	(1)	CO1
	b.	Root, left, right traversal of a tree is known as traversal.	(1)	CO4
	c.	A doubly linked list may or may not have node.	(1)	CO3
	d.	Define the Θ -notation.	(1)	CO1
	e.	A is a queue structure in which elements are inserted or deleted based on priority.	(1)	CO4
2.	Ans	wer <u>all</u> the parts-	[5×2=10]	CO
	a.	Explain the role of space complexity in analysis of algorithm.	(2)	CO1
	b.	Enlist the operations of stack data structure using array.	(2)	CO2
	c.	Enumerate the various applications of tree data structure?	(2)	CO4
	d.	Define the self-referential structure to implement the polynomial representation using linked list.	(2)	CO3
	e.	List out limitation of linear queue when implemented using array.	(2)	CO5
		SECTION – B		
3.	Ans	wer any <u>five of</u> the following-	[5x4=20]	CO
	a.	How are graphs represented in memory of a computer? Give relative merits and demerits of these representation schemes.	(4)	CO5

b.	Explain the Warshall's algorithm for finding the transitive closure using a	(4)	CO2
c.	suitable example. Write an algorithm to determine number of elements in a tree.	(4)	CO4

d.	Discuss the array representation of stacks.	(4)	CO2
e.	Write a short note on approximation algorithms.	(4)	CO5
f.	What is the relationship among P, NP and NP complete problems? Show with	(4)	CO5
	the help of a diagram		
g.	Differentiate between the singly linked list and doubly linked list. Write the algorithm to implement following operation in doubly linked list (DLL):	(4)	CO3

- i. create a DLL.
- ii. insert in the beginning of DLL.

SECTION – C

4	Ans	wer any <u>one</u> of the following-	[5×7=35]	CO
	a.	Define spanning tree. Describe Kruskal's algorithm for finding minimum cost spanning tree with a suitable example.	(7)	CO4
	b.	Write down the Merge sort algorithm. Explain how analysis of Merge sort is done with suitable illustration.	(7)	CO2
5.	Ans	swer any <u>one</u> of the following-		
	а.	Compare the various programming paradigms such as divide-and-conquer, dynamic programming and greedy approach. Explain the greedy algorithm to solve the fractional knapsack problem.	(7)	CO2
(b.	Define binomial heap. Compare and contrast the binomial and Fibonacci heap. Also, Describe the union operation of two binomial heaps.	(7)	CO4
6.	Ans a.	Explain in detail backtracking strategy and give control abstraction for the same. Also differentiate between the backtracking and branch and bound technique.	(7)	CO5
	b.	Write an algorithm for quicksort. Also, apply the quicksort algorithm on following sequence: 25, 10, 30, 15, 20, 28, 18, 12	(7)	CO2
7.	Answer any one of the following-			
	a.	What is an ascending priority queue? Explain how to implement this using binary heap.	(7)	CO4
	b.	Write the advantages and disadvantages of linked list over array. Implement circular queue data structure using circularly doubly linked list.	(7)	CO3
8	Answer any one of the following.			
0.	a.	What is hashing? Explain how it helps in faster accessing of the information?	(7)	CO5
	b.	Write the binary search algorithm. Calculate the time complexity of the above algorithm.	(7)	CO5