Subject Code: AMTBT0102

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

MASTER OF TECHNOLOGY (M. Tech)

(SEM: First, Theory Examination (2020-2021)

SUBJECT NAME: BIOPROCESS ENGINEERING & TECHNOLOGY

Time: 3 Hours

Max. Marks:70

General Instructions:

- > All questions are compulsory. Answers should be brief and to the point.
- ▶ This Question paper consists of ...03......pages & ...8......questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No- 1 is objective type questions carrying 1 mark each, Question No- 2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type -I questions with external choice carrying 4marks each. You need to attempt any five out of seven questions given.
- Section C Question No. 4-8 are Long answer type –II (within unit choice) questions carrying 7 marks each. You need to attempt any one part <u>a or b.</u>
- Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

1.	Answer all_the parts-		[5x1=5]	CO
	a.	 During fluid mixing in bioreactors, which of the following is considered as the slowest step? i. Diffusion ii. Dispersion iii. Distribution iv. Eddy formation 	(1)	C01
	b.	For a microbial culture, if the doubling time is 0.231h, the maximum growth rate will be (assume the endogenous metabolism is negligible): i. 3.0 h^{-1} ii. 2.5 h^{-1} iii. 1.0 h^{-1} iv. 0.3 h^{-1}	(1)	CO2
	c.	 Levels of the primary metabolites in the cells are regulated by i. Feedback Inhibition ii. feedback repression iii. Energy charge iv. All the above 	(1)	CO3

Subject Code: AMTBT0102

	d.	Suppose the fermentation broth contains more than one component. Then for successful extraction operation, the selectivity coefficient should be: i. 0 ii. 1 iii. <1 iv. >1	(1)	CO4
	e.	 Which of the following methods of cell disruption would be suitable for recovery of extracellular products? i. Ultrasonication ii. Ball mill iii. Enzymatic iv. None of the above 	(1)	CO5
2.	An	swer <u>all</u> the parts-	[5×2=10]	CO
	a.	What is cryptic growth?	(2)	CO1
	b.	Define apparent growth yield coefficient for bacteria.	(2)	CO2
	c.	List the steps involved in transfer of O_2 from gas bubble to the cell in fermenter.	(2)	CO3
	d.	Define the role of "filter aids" in filtration of fermentation broth	(2)	CO4
	e.	Differentiate simultaneous and sequential product formation.	(2)	CO5
		SECTION – B		
3.	An	swer any <u>five of</u> the following-	[5x4=20]	CO
	a.	What are the component parts of the fermentation process? Discuss briefly with proper schematic of a bioreactor.	(4)	CO1
	b.	Backer yeast biomass is dried from 14% total solids to 93% total solids. What is the product yield from each 1000 kg of raw yeast biomass assuming that 8% by weight of the original potatoes is lost in peeling?	(4)	CO2
	c.	Define bioenergetics. What is the role of bioenergetics in biochemical engineering?	(4)	CO2
	d.	A fermentation broth with viscosity 10^{-2} Pas and density 1000 kg m^{-3} is agitated in a 2.7 m^3 baffled tank using a Rushton turbine with diameter 0.5 m and stirred speed 1 s^{-1} . Estimate the mixing time.	(4)	CO3
	e.	Write general mass and energy balance equations for a system. Discuss the steps involved in solving simple mass balance problems in bioprocess.	(4)	CO3
	f.	Discuss (i) aerobic and (ii) anaerobic fermentation in details. List the major differences in aerobic and anaerobic fermentation.	(4)	CO4
	g.	What is the principle of chromatography? Define the Scaling-up chromatography.	(4)	CO4

<u>SECTION – C</u>

4	An	swer any <u>one</u> of the following-	[5×7=35]	СО	
	a.	Discuss any two methods of K_L a estimation in bioreactors, in details.	(7)	CO1	
	b.	Discuss some of the commonly used bioreactors in fermentation industry. Also, differentiate solid state and submerged fermentation.	(7)	CO1	
5.	Answer any <u>one of the following-</u>				
	a.	Assume that experimental measurements for a certain organism have shown that cells can convert two-thirds (wt/wt) of the substrate carbon (alkane) to biomass. The biological reaction is given below: Hexadecane: $C_{16}H_{34} + a O_2 + b NH_3 \longrightarrow c(C_{4.4}H_{7.3}N_{0.86}O_{1.2}) + d H_2O + e CO_2$	(7)	CO2	
		 (i) Calculate the stoichiometric coefficients (ii) Calculate RQ (iii) Calculate the yield coefficients YX/S (g dw cell/g substrate), YX/O2 (g dw cell/g O2) for above reaction. 			
	b.	 Corn-steep liquor contains 2.5% invert sugars and 50% water; the rest can be considered solids. Beet molasses containing 50% sucrose, 1% invert sugars, 18% water and the remainder solids, is mixed with corn-steep liquor in a mixing tank. Water is added to produce a diluted sugar mixture containing 2% (w/w) invert sugars. 125 kg corn-steep liquor and 45 kg molasses are fed into the tank. (i) How much water is required? (ii) What is the concentration of sucrose in the final mixture? 	(7)	CO2	
6.	Ar	nswer any <u>one</u> of the following-			
	a.	What do you understand by the term "contamination in bioprocess?" What are the possible sites and consequences of contamination in a fermenter? List the various steps require for avoiding contamination. Expand the terms SIP and CIP.	(7)	CO3	
	b.	Discuss the process for industrial production of backer's yeast in details. Also, represent the entire process in process flow/block diagram.	(7)	CO3	
7.	Answer any <u>one</u> of the following-				
	a.	What are the critical parameters that are to be controlled for industrial production of metabolites through suspended fermentation? Discuss is details with schematic diagram(s).	(7)	CO4	
	b.	Recombinant <i>E. coli</i> was used for industrial production of intercellular metabolite (Protein). Discuss the methodology used for recovery and purification of the desired protein from fermentation broth.	(7)	CO4	
8.	Answer any <u>one of the following-</u>				
	a.	Discuss the theory of filtration of fermentation broth. What are rotatory vacuum filters? Discuss the mechanism of filtration for rotatory vacuum filters.	(7)	CO5	
	b.	Discuss the process of adsorption and its operations in detail.	(7)	CO5	