Printed page: 02....

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

M. Tech

(SEM: I THEORY EXAMINATION (2020-2021)

Roll No:

Subject Name: Applied Biochemistry & Molecular Biology

Time: 3 Hours

General Instructions:

- > All questions are compulsory. Answers should be brief and to the point.
- ▶ This Question paper consists of 2 pages & 8 questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No- 1 is objective type questions carrying 1 mark each, Question No- 2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type -I questions with external choice carrying 4marks each. You need to attempt any five out of seven questions given.
- Section C Question No. 4-8 are Long answer type –II (within unit choice) questions carrying 7 marks each. You need to attempt any one part <u>a or b.</u>
- Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

1.	Answer the following in short:			CO1
	a.	Give one example each of an acidic & basic amino amino	(1)	CO1
	b.	How is Gibb's Free Energy related to enthalpy and entropy?	(1)	CO2
	c.	Define Oxidative phosphorylation	(1)	CO3
	d.	Give the contribution of Meselson and Stahl.	(1)	CO4
	e.	What does central dogma state in molecular biology? How does it differ in some viruses?	(1)	CO5
2.	Answer the following question briefly:		[5×2=10]	CO2
	a.	What are aldoses and ketoses? Give examples of each.	(2)	CO1
	b.	What happens to pyruvic acid under anaerobic respiration?	(2)	CO2
	c.	What is the net gain of ATP during glycolysis? Also give the chemical reactions involved.	(2)	CO3
	d.	Give any two major evidences that prove the evolution of life around RNA.	(2)	CO4
	e.	Construct a complete transcription unit with promoter and terminator on the basis of hypothetical template strand given below:	(2)	CO5

ATGCATGCATAC

Subject Code: AMTBT0101

Max. Marks:70

<u>SECTION – B</u>

3.	Ansv a. b.	ver any <u>five</u> of the following- Diagrammatically explain the clover leaf structure of t-RNA. With any one suitable example explain the energy relationships involved in any catabolic pathway.	[5x4=20] (4) (4)	CO CO1 CO2
	c. d. e.	Describe Cori's cycle along with its significance. What are telomeres? How is it associated with cancer? Explain Wobble hypothesis. How does it contribute for the degeneracy of genetic code?	(4) (4) (4)	CO3 CO4 CO5
	f. g.	Describe the fate of pyruvic acid under aerobic conditions. Define transposons. Enumerate the different types of transposons. $\underline{SECTION - C}$	(4) (4)	CO3 CO5 CO
4	Ansv a.	ver any one of the following- Discuss the structural organization of proteins with suitable examples. Add a note on some important functions of proteins.	[5×7=35] (7)	CO1
5.	b.	Enumerate the salient features of the double helical structure of DNA.	(7)	CO1
	Ans a.	wer any one of the following- Outline the biosynthesis of fatty acids with the help of fatty acid synthase complex.	(7)	CO2
6.	b.	Draw the structure of ATP and list out its significance. Additionally elaborate on the role of kinases in transferring phosphoryl groups.	(7)	CO2
	Ans a.	wer any one of the following- Define chemiosmosis. Discuss how a high concentration of protons is built up in the inter-membranous space of mitochondria.	(7)	CO3
_	b.	Give an account of β – oxidation of saturated even carbon fatty acid (Palmitic acid) along with its energetics and regulation.	(7)	CO3
7.	Ansv a.	ver any one of the following- How is a lengthy linear DNA molecule accommodated in the nucleus as a condensed chromosomal structure?	(7)	CO4
	b.	Elaborate the process of DNA replication. Add a note on the significance of different enzymes involved in it.	(7)	CO4
8.	Answer any one of the following-			CO5
	a.	Briefly describe the process of regulation of gene expression in Lac Operon.	(7)	CO5
	b.	Describe the process of translation in prokaryotes. Discuss the roles of Shine- dalgarno sequence, tRNA and releasing factors. Frame your answer chronologically in context of the three temporal phases of translation.	(7)	CO5