Subject Code: AMIEC0101

CO

 $[10 \times 1 = 10]$

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)

BACHELOR OF TECHNOLOGY (B.Tech).

(SEM: FIRST SEMESTER, THEORY EXAMINATION (2020-2021)

Roll No:

 SUBJECT NAME: BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

 Time: 3 Hours
 Max. Marks:100

General Instructions:

- > All questions are compulsory. Answers should be brief and to the point.
- ▶ This Question paper consists of 03 pages & 8 questions.
- > It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No- 1 is objective type questions carrying 1 mark each, Question No- 2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type–I questions with external choice carrying 6 marks each. You need to attempt any five out of seven questions given.
- Section C Question No.4 to 8 are Long answer type –II (within unit choice) questions carrying 10 marks each. You need to attempt any one part <u>a or b.</u>
- Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

$\underline{SECTION} - \underline{A}$

1. Answer <u>all</u> the parts-

a. Consider the circuit shown below. Find the equivalent Thevenin's voltage (volts) (1) CO1 between nodes A and B

	(A) 8	(B) 8.5	(C) 9	(D) 9.5		
b.	In a delta networ	rk each element has valu	e R. The value of each	element in equivalent	(1)	CO1
	star network will	l be:				
	(A) 3R	(B) R/3	(C) R/6	(D) R/12		
c.	In a series R, I	L circuit, voltage acros	ss resistor and inducto	or are 3 V and 4 V	(1)	CO2
	respectively, the	n what is the applied vol	ltage?			
	(A) 7V	(B) 1V	(C) 5V	(D) 25V		
d.	In RLC series c	ircuit, if the voltage act	ross capacitor is greate	r than voltage across	(1)	CO2
	inductor, then power factor of the network is:					
	(A) Lagging	(B) Leading	(C) Unity	(D) Zero		
e.	Normally the eff	ficiency of a transformer	lies in the range of		(1)	CO3
f.	MCB & ELCB s	stands for	&res	spectively.	(1)	CO3
g.	A Zener diode is	used as			(1)	CO4
	(A) an amplifier	(B) a rectifier (C) a vol	ltage regulator (D) a n	nultivibrator		
h.	If PIV rating of a diode is exceeded, the diode			(1)	CO4	
	(A) stops conduc	ction	(B) is destroyed			

(C) conducts heavily in forward direction (D) None of these

		Subject Code: AMIEC0101		
i.	An ideal Op-Amp has		(1)	CO5
	(A) Infinite input resistance	(B) Infinite voltage gain		
	(C) Zero output resistance	(D) All of these		
ј.	j. Internet domain name and hostname are translated into IP address by			CO5
	(A) Domain name system	(B) Domain name database		
	(C) Router	(D) Domain information System		
Ansv	wer <u>all</u> the parts-		[5×2=10]	CO

a. Calculate the current in 6Ω branch for the circuit shown in Figure given below- (2) CO1

2.

3.

b.	An RLC circuit consisting of resistance 40 Ω , capacitance 120 μ F and inductance 5H are connected in series with a supply of 250V, 50Hz source. Calculate quality factor	(2)	CO2
c.	Explain the principle of operation of a 1-phase Transformer on no-load.	(2)	CO3
d.	Explain the breakdown mechanism in a diode.	(2)	CO4
e.	Draw the diagrams of Inverting and Non-inverting Op-Amps.	(2)	CO5

CO

Answer any five of the followinga. Find the equivalent resistance between x-y using star-delta transformation in the Fig.2 (6) CO1 shown. Fig.2

- b. State Maximum Power Transfer Theorem applied for DC circuits. Derive its condition (6) CO1 also.
- c. The voltage applied to a circuit is $v = 100 \sin (\theta + 30^{\circ})$ and the current flowing in the (6) CO2 circuit is $I = 15 \sin (\theta + 60^{\circ})$. Determine the impedance, resistance, reactance, power and the power factor of the circuit.
- **d.** What are the necessities and advantages of using 3-phase system? Derive $V_L = \sqrt{3}V_{ph}$ (6) CO2 for star connection.
- e. A 50KVA transformer is operating at 0.9 power factor lagging and 75% of the full
 (6) CO3
 load. Find the efficiency of the transformer if the core and copper losses at full load
 are 900W and 1200W respectively.
- f. Describe a half wave rectifier using a junction diode. Derive the expressions for ripple (6) CO4 factor and efficiency for half wave rectifier circuit.
- **g.** Draw the circuit diagram of an Integrator using Op-Amp and find the expression of (6) **CO5** output voltage.

SECTION – C

4 Answer any <u>one</u> of the following-

a. Find the Thevenin equivalent model across a-b in Fig.3.

b. Find the node voltages at node X and Y in the circuit of Fig.4. using Nodal Analysis. (10) CO1

5. Answer any <u>one of the following-</u>

a.	a. A series RLC circuit consisting of resistance 20Ω , capacitance 150μ F and inductance		(10)	CO2
	2H are connected with 250V, 50Hz source. Calculate:			
	(i)	Power factor		

- (ii) The frequency of supply to be adjusted to make the power factor unity.
- (iii) Net reactance and impedance.

b.	Derive the expression for power in a three-phase star connection. A balanced star	(10)	CO2
	connected load of $(8+j6) \Omega$ per phase is connected to a balanced 3-phase, 400V supply.		
	Find the line current, power factor and power.		

6. Answer any <u>one of the following-</u>

a.	Develop the equivalent circuit of a single-phase transformer on no-load and on-load	(10)	CO3
	conditions.		

 b. Draw a one-line diagram of a Power System from generating station to end user. (10) CO3 Mention the different voltage levels.

7. Answer any <u>one</u> of the following-

- a. State and explain the characteristics of a Zener diode. How it can be used as a voltage (10) CO4 regulator?
- **b.** Clearly explain the difference in principle of operation between LED and LCD. Why (10) CO4 are LCDs preferred for displays in the pocket calculators?

8. Answer any <u>one</u> of the following-

- a. In a Non-inverting Op-Amp, the value of gain is 1.5. If the input resistance is $4k\Omega$, (10) CO5 what should be the feedback resistance R_f to have desired gain?
- **b.** Find the gain of the amplifier shown in Fig.5. Open loop gain is 10^5 . (10) CO5

