	Printed page:02 Subject Code: A	Subject Code: AMIAS0103					
NI	KOII NO:						
(An Autonomous Institute Affiliated to AKTU, Lucknow)							
M.Tech(Master of Integrated Technology)							
(SEM: FIRST SEMESTER THEORY EXAMINATION (2020-2021))							
	Subject Name: <u>Engineering Mathematics-1</u> Time: 3 Hours Max Marks: 100						
Gene	ral Instructions:						
≻	All questions are compulsory. Answers should be brief and to the point.						
This Question paper consists of 02 pages & 8 questions.							
 It comprises of three Sections, A, B, and C. You are to attempt all the sections. Section A Question No. 1 is objective type questions carrying 1 mark each Question No. 2 is very short. 							
answer type carrying 2 mark each. You are expected to answer them as directed.							
Section B - Question No-3 is Long answer type -I questions with external choice carrying 6 marks each.							
You need to attempt any five out of seven questions given.							
eac	h. You need to attempt any one part <u>a or b.</u>	g romana					
Þ	Students are instructed to cross the blank sheets before handing over the answer sheet to the	e invigilator.					
	No sheet should be left blank. Any written material after a blank sheet will not be evaluated,	/checked.					
	SECTION – A						
Att	empt all the parts.	[10×1=10]	CO				
a.	A is a singular matrix of order 3 with eigen values 2 and 3. The third eigen value is	(1)	CO1				
	(a) 1 (b) 0						
	(c) 4						
_	(d) -1		~~ (
b.	The rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ is	(1)	CO1				
	(a) 0 (b) 1						
	(c) 2						
	(d) 3						
c.	If $u = \frac{x^2}{a} + \frac{y^2}{b} - 7$ then $\frac{\partial u}{\partial x}$ is	(1)	CO2				
d.	If $u = x^2$ and $x = t^3$ then $\frac{du}{dt}$ is	(1)	CO2				
e.	If $x = r\cos \phi$ and $y = r\sin \phi$ then $\frac{\partial(x,y)}{\partial(r,\phi)}$ is	(1)	CO3				
f.	The function $z = y^2 + x^2y + x^4$ has a minimum at (0,0). (T/F)	(1)	CO3				
g.	The value of the double integral $\int_{x=0}^{3} \int_{y=0}^{1} (x^2 + 3y^2) dy dx$ is 12. (T/F)	(1)	CO4				
h.	The value of $\int_0^\infty e^{-x^2} dx$ is $\sqrt{\pi}$. (T/F)	(1)	CO4				
i.	The value of $81 \times 81 + 68 \times 68 - 2 \times 81 \times 68$ is	(1)	CO5				
j.	Insert the missing number: 11, 13, 17, 19, 23, 29, 31, 37, 41, ().	(1)	CO5				
Attempt all the parts.			CO				
a.	Find <i>a</i> and <i>b</i> such that $A = \begin{bmatrix} a & 4 \\ 1 & b \end{bmatrix}$ has 3 and -2 as eigen values.	(2)	COI				
b.	Find the n^{th} derivative of $y = sin (ax + b)$.	(2)	CO2				
c.	The radius of a sphere is found to be 10 meter with a possible error of 0.02 meter. What is the relative error in calculating the volume of sphere?	(2)	CO3				
d.	Prove that Beta function is symmetric.	(2)	CO4				
e.	If 50% of $(x - y)$ is 30% of $(x + y)$ then what percent of x is y?	(2)	CO5				

1.

2.

<u>SECTION – B</u>

3.	Ansv	ver any <u>five</u> of the following-	[5×6=30]	CO		
	a.	Show that the system of equations $3x + 4y + 5z = \alpha$ $4x + 5y + 6z = \beta$ $5x + 6y + 7z = \gamma$	(6)	CO1		
		is consistent only if α , β and γ are in arithmetic progression.				
	b.	Trace the curve $a^2 y^2 = x^2 (a^2 - x^2)$.	(6)	CO2		
	c.	Prove that $\frac{1}{(1-x)} = \frac{1}{3} + \frac{(x+2)}{3^2} + \frac{(x+2)}{3^3} + \frac{(x+2)^2}{3^4} + \cdots \dots$	(6)	003		
	d.	Change the order of integration and hence evaluate $\int_0^a \int_{x^2/a}^{2a-x} xy dy dx$.	(6)	CO4		
	e.	Using the transformation $x + y = u$ and $y = uv$, show that $\int_0^1 \int_0^{1-x} e^{\left(\frac{y}{x+y}\right)} dy dx = \frac{1}{2}(e-1)$.	(6)	CO4		
	f.	The selling price of 20 articles is equal to the cost price of 25 articles. Find the profit percent.	(6)	CO5		
	g.	If the word LEADER is coded as 20-13-9-12-13-26, how would you write LIGHT?	(6)	CO5		
SECTION – C						
4	Ansv	ver any one of the following-	[5×10=50]	CO		
	a.	State Cayley-Hamilton theorem. Verify Cayley-Hamilton theorem for the matrix $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$	(10)	001		
		$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \text{ and hence find } A^{-1}.$		COI		
	b.	Find eigen values and corresponding eigen vectors of the matrix $\begin{bmatrix} 2 & 10 & 5 \end{bmatrix}$	(10)	CO1		
_		$A = \begin{bmatrix} 3 & 10 & 3 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}.$				
5.	Ansv a.	Ver any one of the following- If $u = x^n \log x$ prove that (i) $u = -\frac{n!}{(ii)} x^2 u = 1 (2n - 2n + 1) x u = 1$	(10)	CO2		
		If $y = x^{-1} \log x$, prove that (1) $y_{n+1} = \frac{1}{x}^{-1} (11)^{-1} x^{-1} y_{p+2} + (2p - 2n + 1)^{-1} x^{-1} y_{p+1} + (n - n)^{-2} y_{p+1} = 0$	(10)	001		
	b.	$(p - n) y_p = 0$. State and prove Euler's theorem for homogeneous function. Also prove that if	(10)	CO2		
		$u = \tan^{-1} \left[\frac{x^3 + y^3}{x - y} \right] \text{ then } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u.$				
6.	Ansv	ver any one of the following-		GOA		
	a. h	Expand x^{y} in powers of $(x - 1)$ and $(y - 1)$ up to the third degree terms. Find a point on the paraboloid $z = x^{2} + y^{2}$ pearest to the point (3-6.4)	(10) (10)	CO3		
7.	Ansv	ver any one of the following-	(10)	005		
	a.	Prove by the method of double integration that the area lying between the parabolas	(10)	CO4		
		$y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.				
	b.	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by using Dirichlet's theorem.	(10)	CO4		
8.	Ansv	ver any one of the following-	(10)	CO5		
	a.	A batsman makes a score of 8/ runs in the $1/m$ inning and thus increases his average by 3 Find his average after 17^{th} inning	(10)	005		
	b.	If three numbers are added in pairs, the sums equal 10, 19 and 21. Find the numbers.	(10)	CO5		