Subject Code: AAS0101A

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

BACHELOR OF TECHNOLOGY (B.Tech)

(SEM: First Theory Examination (2020-2021)

SUBJECT NAME: ENGINEERING PHYSICS

Time: 3 Hours

Max. Marks:100

General Instructions:

- > All questions are compulsory. Answers should be brief and to the point.
- ▶ This Question paper consists of 03 pages & 8 questions.
- ▶ It comprises of three Sections, A, B, and C. You are to attempt all the sections.
- Section A Question No- 1 is very short answer type questions carrying 1 mark each, Question No- 2 is short answer type carrying 2 mark each. You are expected to answer them as directed.
- Section B Question No-3 is Long answer type -I question with external choice carrying 6 marks each. You need to attempt any five out of seven questions given.
- Section C Question No. 4-8 are Long answer type –II (within unit choice) questions carrying 10 marks each. You need to attempt any one-part <u>a or b.</u>
- Students are instructed to cross the blank sheets before handing over the answer sheet to the invigilator.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

1.	Ans	wer <u>all</u> the parts-	[10×1=10]	CO
	a.	What is massless particle?	(1)	CO1
	b.	Write Lorentz transformation equations of space and time.	(1)	CO1
	c.	What is Higgs Boson?	(1)	CO2
	d.	Write any one application of uncertainty principle.	(1)	CO2
	e.	What do you understand by coherent sources?	(1)	CO3
	f.	Name any two optical filters.	(1)	CO3
	g.	Define skin depth.	(1)	CO4
		OR		
		Define Photovoltaic effect.		
	h.	Write Maxwell's equation of Ampere's law.	(1)	CO4
		OR		
		Define Fermi Dirac distribution function.		
	i.	Name any two dielectric materials.	(1)	CO5
OR				
		Write different types of magnetic and semiconductor memories.		
	j.	Define Ferro-electricity.	(1)	CO5
		OR		

Define dispersion in optical fibres.

		Sul	oject Code: AA	t Code: AAS0101A	
2.	Ansv	wer <u>all</u> the parts.	[5×2=10]	CO	
	a.	Write down the postulates of special theory of relativity.	(2)	CO1	
	b.	Calculate the de-Broglie wavelength of an electron which has been	(2)	CO2	
		accelerated from rest through a potential difference of 100 volt.			
	c.	What do you mean by resolving power of a grating?	(2)	CO3	
	d.	Explain the concept of displacement current.	(2)	CO4	
		OR			
	_	Define drift velocity.	(2)	005	
	e.	Explain the concept of polarization of dielectric materials. OR	(2)	CO5	
		Explain the construction of optical fibre.			
				CO	
2	A	$\frac{\text{SECTION} - B}{\text{SECTION} - B}$	[5.46 20]	CO	
3.		wer any <u>five of the following-</u>	[5×6=30]	CO1	
	a.	Derive the relativistic energy-momentum relationship in special theory relativity.		CO1	
	b.	Derive the Schrodinger time independent and time dependent wave equation	ns. (6)	CO2	
	c.	Discuss the phenomenon of Fraunhofer diffraction at single slit and show that the relative intensities of successive maxima are nearly :	(6)	CO3	
		$1:\frac{4}{9\pi^2}:\frac{4}{25\pi^2}:\frac{4}{49\pi^2}\dots\dots\dots$			
	d.	Write down the Maxwell's equations in differential and integral form and	(6)	CO4	
		give physical significance of each (no derivation required).			
		OR			
		Explain the construction and working of solar cell.		005	
	e.	Derive an expression for Claussius -Mossotti equation.	(6)	CO5	
		OR Stablish the relation between Einstein's coefficients of radiation transitions			
	f.	A soap film of refractive index 1.43 is illuminated by white light incident		CO3	
	1.	an angle of 30° . The reflected light is examined by a spectroscope in wh		005	
		dark band corresponding to the wavelength 6000 Å is observed. Calculate			
		thickness of the film.			
	g.	Consider a rod of length 2 cm inclined at an angle 60° along the direction	of (6)	CO1	
	9	motion in a frame moving at speed 0.9c. What will be the length of rod			
		measured by an observer from rest frame?			
		<u>SECTION – C</u>		CO	
4	Ans	wer any <u>one</u> of the following-	[5×10=50]		
-	a.	Derive an expression for Einstein's mass energy relation. What does it	(10)	CO1	
		signify physically?			
	b.	An observer on a railway platform finds that a train moving with velocity	(10)	CO1	
		0.6c passes him in half a second. What is the length of the train measured b	у		
		him and the proper length?			

		Bubjee		
5.	Ans	swer any <u>one</u> of the following-		
	a.	Show that $\psi(x, y, z, t) = \psi(x, y, z) e^{-iwt}$ is a wave function of a stationary	(10)	CO2
		state.		
	b.	A particle is in motion along a line $x = 0$ and $x = L$ with zero potential energy.	(10)	CO2
		At point for which $x < 0$ and $x > L$, the potential energy is infinite. Solving		
		Schrodinger equation, obtain energy eigen values & normalized wave function		
		for the particle.		
6.	Answer any one of the following-			
	a.	Newton's rings are observed in reflected light of wavelength 5890 Å. The	(10)	CO3
		radius of the convex surface of the lens is 100 cm. A liquid is put between		
		curved surface of lens and plate. The diameter of 10th ring is 4.2 mm.		
		Calculate the refractive index of liquid when ring is dark.		
	b.	Describe how Newton's rings experiment can be used to determine the	(10)	CO3
		refractive index of a liquid.		
7.	Ans	swer any <u>one of</u> the following-		
	a.	Deduce Coulomb's law of electro-statistics from Maxwell's first equation.	(10)	CO4
		Or		
		Explain the concept of electrical conductivity in metals and derive the		
		expression for electrical conductivity for n-type and p-type semiconductors.		
	b.	What is Poynting vector? Derive and explain Poynting theorem.	(10)	CO4
		OR		
		Derive an expression for the position of Fermi level in intrinsic and extrinsic semiconductors.		
8.	Ans	swer any <u>one</u> of the following-		
0.	a.	A metal sphere of radius a carries charge Q. It is surrounded by a linear	(10)	CO5
		dielectric material of permittivity ϵ and radius b. Find bounded surface and	()	
		volume charge densities.		
		OR		
		Discuss the construction and operation of He-Ne laser. Why the discharge tube		
		is made narrower in He-Ne laser?		
	b.	What are different types of polarization? Explain.	(10)	CO5
		OR	. /	
		Differentiate between step index and graded index optical fiber. Derive the		

relation for acceptance angle in optical fiber.