
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY

Evaluation Scheme & Syllabus

B.Tech -

(Effective from the Session: 2021

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH

Evaluation Scheme & Syllabus

For

 Second Year-Lateral Entry (B.Sc.

(Effective from the Session: 2021-22)

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

UTTAR PRADESH, LUCKNOW

(B.Sc.)

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.)
B.Tech (CS, CSE(IOT), ECE, IT, CSE(AIML), ME, CSE, CSE(DS), CSE(AI), BT)

EVALUATION SCHEME
SEMESTER-III

Sl.
No.

Subject
Codes

Subject Name
Periods Evaluation Scheme

End
Semester Total Credit

L T P CT TA TOTAL PS TE PE

WEEKS COMPULSORY INDUCTION PROGRAM

1
ACSE0101Z

Problem Solving using
Python

3 0 0 30 20 50

100

150* 0

2 ACSE0151Z
Problem Solving using
Python Lab

0 0 2

25

25 50* 0

 GRAND TOTAL 200*

All the students must clear the above mentioned subjects of the first year (Semester-I) Engineering
Program along with the second year (Semester-III) subjects.

*All Bridge Courses are zero (0) credit courses.
 *Total and obtained marks are not added in the Grand Total.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.)
B.Tech (CSBS)

EVALUATION SCHEME
SEMESTER-III

Sl.
No.

Subject
Codes

Subject Name
Periods Evaluation Scheme

End
Semester Total Credit

L T P CT TA TOTAL PS TE PE

WEEKS COMPULSORY INDUCTION PROGRAM

1
ACSBS0103Z

Fundamentals of Computer
Science 3 0 0 30 20 50 100 150*

0

2 ACSBS0153Z
Fundamentals of Computer
Science Lab 0 0 4 25 25 50* 0

 GRAND TOTAL 200*

All the students must clear the above mentioned subjects of the first year (Semester-I) Engineering
Program along with the second year (Semester-III) subjects.

*All Bridge Courses are zero (0) credit courses.
 *Total and obtained marks are not added in the Grand Total.

Abbreviation Used: -
L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE:

Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.)
B.Tech (CSE, CS, IT, AIML, AI, DS)

EVALUATION SCHEME
SEMESTER-IV

Sl.
No.

Subject
Codes

Subject Name
Periods Evaluation Scheme

End
Semester Total Credit

L T P CT TA TOTAL PS TE PE

WEEKS COMPULSORY INDUCTION PROGRAM

1 ACSE0202Z
Problem Solving using
Advanced Python

3 1 0 30 20 50 100 150* 0

2 ACSE0252Z
Problem Solving using
Advanced Python Lab

0 0 2 25 25 50* 0

 GRAND TOTAL 200*

All the students must clear the above mentioned subjects of the first year (Semester-II)
Engineering Program along with the second year (Semester-IV) subjects.
.

*All Bridge Courses are zero (0) credit courses.

 *Total and obtained marks are not added in the Grand Total.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.)
B.Tech (BT)

EVALUATION SCHEME
SEMESTER-IV

Sl.
No.

Subject
Codes

Subject Name
Periods Evaluation Scheme

End
Semester Total Credit

L T P CT TA TOTAL PS TE PE

WEEKS COMPULSORY INDUCTION PROGRAM

1 ABT0201Z
Introduction to
Biotechnology

3 0 0 30 20 50

100

150* 0

2 ABT0251Z
Introduction to
Biotechnology Lab

0 0 2

25

25 50* 0

 GRAND TOTAL 200*

All the students must clear the above mentioned subjects of the first year (Semester-II)
Engineering Program along with the second year (Semester-IV) subjects.

*All Bridge Courses are zero (0) credit courses.

 *Total and obtained marks are not added in the Grand Total.

Abbreviation Used: -
L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE:

Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.)
B. Tech (ECE, ME, IOT)

EVALUATION SCHEME
SEMESTER-IV

Sl.
No.

Subject
Codes

Subject Name
Periods Evaluation Scheme

End
Semester Total Credit

L T P CT TA TOTAL PS TE PE

WEEKS COMPULSORY INDUCTION PROGRAM

1 ACSE0201Z
Programming for Problem
Solving using C

3 0 0 30 20 50

100

150* 0

2 ACSE0251Z
Programming for Problem
Solving using C Lab

0 0 2

25

25 50* 0

 GRAND TOTAL 200*

All the students must clear the above mentioned subjects of the first year (Semester-II)
Engineering Program along with the second year (Semester-IV) subjects.

*All Bridge Courses are zero (0) credit courses.
 *Total and obtained marks are not added in the Grand Total.

NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute)

Bridge Courses for Lateral Entry Students Admitted Through (B. Sc.)
B.Tech (CSBS)

EVALUATION SCHEME
SEMESTER-IV

Sl.
No.

Subject
Codes

Subject Name
Periods Evaluation Scheme

End
Semester Total Credit

L T P CT TA TOTAL PS TE PE

WEEKS COMPULSORY INDUCTION PROGRAM

1 ACSBS0203Z
Data Structures &

Algorithms
3 1 0 30 20 50

100

150* 0

2 ACSBS0253Z
Data Structures &
Algorithms Lab 0 0 4

25

25 50* 0

 GRAND TOTAL 200*

All the students must clear the above mentioned subjects of the first year (Semester-II)
Engineering Program along with the second year (Semester-IV) subjects.

*All Bridge Courses are zero (0) credit courses.
 *Total and obtained marks are not added in the Grand Total.

Abbreviation Used: -
L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE:

Theory End Semester Exam., PE: Practical End Semester Exam.

B.TECH FIRST YEAR

Course Code ACSE0101Z L T P Credit

Course Title Problem solving using Python 3 0 0 0

Course objective:
1 To impart knowledge of basic building blocks of Python programming
2 To provide skills to design algorithms for problem solving
3 To impart the knowledge of implementation and debugging of basic programs in Python
4 To disseminate the knowledge of basic data structures
5 To provide the knowledge of file system concepts and its application in data handling

Pre-requisites: Students are expected to be able to open command prompt window or terminal window,
edit a text file, download and install software, and understand basic programming concepts.

Course Contents / Syllabus

UNIT-I Basics of python programming 8 hours

Introduction: Introduction to computer system, algorithms, Ethics and IT policy in company, Feature of object-
oriented programming, A Brief History of Python, Applications areas of python, The Programming Cycle for
Python, Python IDE, Interacting with Python Programs.
Elements of Python: keywords and identifiers, variables, data types and type conversion, operators in python,
expressions in python, strings.
UNIT-II Decision Control Statements 8 hours
Conditionals: Conditional statement in Python (if-else statement, its working and execution),
Nested-if statement and elif statement in Python, Expression Evaluation & Float Representation.
Loops: Purpose and working of loops, while loop, For Loop, Nested Loops, Break and Continue, pass
statement.
UNIT-III Function and Modules 8 hours
Introduction of Function, calling a function, Function arguments, built in function, scope rules, Passing
function to a function, recursion, Lambda functions
Modules and Packages: Importing Modules, writing own modules, Standard library modules, dir() Function,
Packages in Python
UNIT-IV BasicData structures in Python 8 hours
Strings: Basic operations, Indexing and Slicing of Strings, Comparing strings, Regular expressions.
Python Basic Data Structure: Sequence, Unpacking Sequences, Mutable Sequences, Lists, List
Comprehension, Looping in lists, Tuples, Sets, Dictionaries
UNIT-V File and Exception handling 8 hours
Files and Directories: Introduction to File Handling in Python, Reading and Writing files, Additional file
methods, Working with Directories.

Exception Handling, Errors, Run Time Errors, Handling IO Exception, Try-except statement, Raise, Assert
Searching &Sorting: Simple search & Binary search, Selection Sort, Merge Sort
Course outcome: At the end of course, the student will be able to

CO 1 Write simple python programs. K2, K3

CO 2 Develop python programs usingdecision control statements K3, K6

CO 3 Implement user defined functions and modules in python K2

CO 4 Implement python data structures –lists, tuples, set, dictionaries K3

CO 5 Perform input/output operations with files in python and implement searching, sorting
and merging algorithms

K3, K4

Text books

(1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"—Third Edition, Apress
(2) Python Programming using Problem solving approach by ReemaThareja OXFORD
Higher education
(3) Kenneth A. Lambert, ―Fundamentals of Python: First Programs, CENGAGE Learning, 2012.
Reference Books

(1) John V Guttag, ―Introduction to Computation and Programming Using Python‘‘, Revised and expanded
Edition, MIT Press , 2013
(2) Charles Dierbach, ―Introduction to Computer Science using Python: A Computational Problem Solving
Focus, Wiley India Edition, 2013.
(3) Allen B. Downey, “Think Python: How to Think Like a Computer Scientist”, 2nd edition, Updated for
Python 3, Shroff/O‘Reilly Publishers, 2016
(4) Robert Sedgewick, Kevin Wayne, Robert Dondero: Introduction to Programming in Python: An Inter-
disciplinary Approach, Pearson India Education Services Pvt. Ltd.,2016.
(5) Timothy A. Budd, ―Exploring Pythonۅ, Mc-Graw Hill Education (India) Private Ltd.,2015.
(6) Guido van Rossum and Fred L. Drake Jr, ―An Introduction to Python – Revised and updated for Python
3.2, Network Theory Ltd., 2011.
E-book and E-Content
(1) https://www.pdfdrive.com/hacking-hacking-practical-guide-for-beginners-hacking-with-pythn-
e182434771.html
(2) https://www.pdfdrive.com/python-programming-python-programming-for-beginners- python-
programming-for-intermediates-e180663309.html
(3)https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-
e175246184.html
(4) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-
e160968277.html
(5) https://docs.python.org/3/library/index.html
(6) https://www.w3schools.com/python/
(7) https://www.py4e.com/materials
Reference Links
Unit-1 https://nptel.ac.in/courses/106/106/106106182/
Unit-2 https://nptel.ac.in/courses/106/106/106106212/
Unit-3 https://nptel.ac.in/courses/106/106/106106145/
Unit-4- https://nptel.ac.in/courses/106/106/106106145/
Unit-5- https://nptel.ac.in/courses/106/106/106106145/
[Unit-2]- https://www.youtube.com/watch?v=PqFKRqpHrjw
[Unit – 3]- https://www.youtube.com/watch?v=m9n2f9lhtrw
 https://www.youtube.com/watch?v=oSPMmeaiQ68

[Unit 4]- https://www.youtube.com/watch?v=ixEeeNjjOJ0&t=4s
[Unit-5]- https://www.youtube.com/watch?v=NMTEjQ8-AJM
After Completing Course Student may get certification in python using following links:
Link for Certification:
https://swayam.gov.in/nd1_noc19_cs41/preview
https://aktu.ict.iitk.ac.in/courses/python-programming-a-practical-approach/

B.TECH FIRST YEAR

Lab Code ACSE0151Z L T P Credit

Lab Title Problem Solving using Python Lab 0 0 2 0

Course outcome: At the end of course, the student will be able to
CO 1 Write simple python programs. K2, K3
CO 2 Implement python programs usingdecision control statements K3, K6
CO 3 Writing python programs using user defined functions and modules K2
CO 4 Implement programs using python data structures –lists, tuples, set,

dictionaries
K3

CO 5 Write programs to perform input/output operations on files K3, K4

List of Experiment:
List of Fundamental Programs

S.N. Program Title Category

1 Python Program to print “Hello Python” Basic
2 Python Program to read and print values of variables of different data types. Basic
3 Python Program to perform arithmetic operations on two integer numbers Basic
4 Python Program to Swap two numbers Basic
5 Python Program to convert degree Fahrenheit into degree Celsius Operators
6 Python Program to demonstrate the use of relational operators. Operators
7 Python Program to understand the working of bitwise and logical operators. Operators
8 Python Program to calculate roots of a quadratic equation. Conditional
9 Python Program to check whether a year is leap year or not. Conditional

10 Python Program to find smallest number among three numbers. Conditional
11 Python Program to make a simple calculator. Conditional
12 Python Program to find the factorial of an integer number. Loop
13 Python Program to find the reverse of an integer number. Loop
14 Python Program to find and print all prime numbers in a list. Loop
15 Python Program to Find the Sum of ‘n’ Natural Numbers Loop
16 Python Program to print sum of series: - 1/2 + 2/3+ 3/4 ++n/(n+1) Loop
17 Python Program to print pattern using nested loop Loop
18 Python Program to Display the multiplication Table of an Integer Loop
19 Python Program to Print the Fibonacci sequence Loop
20 Python Program to Check Armstrong Number Loop
21 Python Program to Find Armstrong Number in an Interval Loop
22 Python Program to check Using function whether a passed string is

palindrome or not
Function

23 Python Program using function that takes a number as a parameter, check
whether the number is prime or not.

Function

24 PythonProgram using function that computes gcd of two given numbers. Function
25 Python Program to Find LCM of two or more given numbers. Function
26 Python Program to Convert Decimal to Binary, Octal and Hexadecimal Function
27 Python Program To Find ASCII value of a character Basic
28 Python Program to Display Calendar Loop
29 Python Program to Add Two Matrices Loop
30 Python Program to Multiply Two Matrices Loop
31 Python Program to Transpose a Matrix Loop
32 Python Program to Sort Words in Alphabetic Order Sorting
33 Python Program to Display Fibonacci Sequence Using Recursion Recursion
34 Python Program to Find Factorial of Number Using Recursion Recursion

35 Python Program that implements different string methods. String
36 Python Program that validates given mobile number. Number should start

with 7, 8 or 9 followed by 9 digits.
String

37 Python Program to implement various methods of a list. List
38 Python Program that has a nested list to store toppers details. Edit the details

and reprint them.
List

39 Python Program to swap two values using tuple assignment. Tuple
40 Python Program that has a set of words in English language and their

corresponding Hindi words. Define dictionary that has a list of words in
Hindi language and their corresponding Hindi Sanskrit. Take all words from
English language and display their meaning in both languages.

Dictionary

41 Python Program that inverts a dictionary. Dictionary
42 Python Program that reads data from a file and calculates percentage of

white spaces, lines, tabs, vowels and consonants in that file.
File

43 Python Program that fetches data from a given url and write it in a file. File
44 Python Program to understand the concept of Exception Handling Exception

Handling
45 Python Program to implement linear and binary search Searching
46 Python Program to sort a set of given numbers using Bubble sort Sorting

S.No. Word Problem Experiments

1. String Rotation
Problem Description
Rotate a given String in the specified direction by specified magnitude.
After each rotation make a note of the first character of the rotated String, after all rotation are
performed the accumulated first character as noted previously will form another string, say
FIRSTCHARSTRING.
Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string.
If yes print "YES" otherwise "NO". Input
The first line contains the original string s. The second line contains a single integer q. The ith of
the next q lines contains character d[i] denoting direction and integer r[i] denoting the
magnitude.
Constraints
1 <= Length of original string <= 30
1<= q <= 10
Output
YES or NO
Explanation
Example 1
Input
carrace
3
L 2
R 2
L 3
Output
NO
Explanation
After applying all the rotations, the FIRSTCHARSTRING string will be "rcr" which is not
anagram of any sub string of original string "carrace".

2. Jurassic Park
Problem Description
Smilodon is a ferocious animal which used to live during the Pleistocene epoch (2.5 mya–

10,000 years ago). Scientists successfully created few smilodons in an experimental DNA
research. A park is established and those smilodons are kept in a cage for visitors.
This park consists of Grasslands(G), Mountains(M) and Waterbodies(W) and it has three
gates (situated in grasslands only). Below is a sample layout.

Before opening the park, club authority decides to calculate Safety index of the park. The
procedure of the calculation is described below. Please help them to calculate.
Safety Index calculation
Assume a person stands on grassland(x) and a Smilodon escapes from the cage situated on
grassland(y). If the person can escape from any of those three gates before the Smilodon able
to catch him, then the grassland(x) is called safe else it is unsafe. A person and a Smilodon
both take 1 second to move from one area to another adjacent area(top, bottom, left or right)
but a person can move only over grasslands though Smilodon can move over grasslands and
mountains.
If any grassland is unreachable for Smilodon(maybe it is unreachable for any person also), to
increase safe index value Club Authority use to mark those grasslands as safe land. Explained
below

For the above layout, there is only one gate at (4,6)
Y is the position of Smilodon’s cage
X is not safe area
Z is a safe area as is it not possible for smilodon to reach z
Safety index=(total grassland areas which are safe*100)/total grassland area
Constraints

i. 3<= R,C<= 10^3
ii. Gates are situated on grasslands only and at the edge of the park
iii. The cage is also situated in grassland only
iv. The position of the cage and the position of three gates are different

Input Format
The first line of the input contains two space-separated integers R and C, denoting the size of
the park (R*C)
The second line contains eight space-separated integers where
First two integers represent the position of the first gate
3rd and 4th integers represent the position of second gate
5th and 6th integers represent the position of third gate respectively
The last two integers represent the position of the cage
Next R lines, each contains space separated C number of characters. These R lines represent
the park layout.
Output
Safety Index accurate up to two decimal places using Half-up Rounding method
Explanation

Example 1
Input
4 4
1 1 2 1 3 1 1 3
G GGG
G W W M
G G W W
M G M M
Output
75.00

3. Bank Compare
Problem Description
There are two banks; Bank A and Bank B. Their interest rates vary. You have received offers
from both bank in terms of annual rate of interest, tenure and variations of rate of interest
over the entire tenure.
You have to choose the offer which costs you least interest and reject the other.
Do the computation and make a wise choice.
The loan repayment happens at a monthly frequency and Equated Monthly Installment (EMI)
is calculated using the formula given below :
EMI = loanAmount * monthlyInterestRate/(1 - 1 / (1
+monthlyInterestRate)^(numberOfYears * 12))
Constraints

i. 1 <= P <= 1000000
ii. 1 <=T <= 50
iii. 1<= N1 <= 30
iv. 1<= N2 <= 30

Input Format
First line : P – principal (Loan Amount)
Second line : T – Total Tenure (in years).
Third Line : N1 is number of slabs of interest rates for a given period by Bank A. First slab
starts from first year and second slab starts from end of first slab and so on.
Next N1 line will contain the interest rate and their period.
After N1 lines we will receive N2 viz. the number of slabs offered by second bank.
Next N2 lines are number of slabs of interest rates for a given period by Bank B. First slab
starts from first year and second slab starts from end of first slab and so on.
The period and rate will be delimited by single white space.
Output
Your decision – either Bank A or Bank B.
Explanation
Example 1
Input
10000
20
3
5 9.5
10 9.6
5 8.5
3
10 6.9
5 8.5
5 7.9
Output
Bank B

4. Cross Words
Problem Description
A crossword puzzle is a square grid with black and blank squares, containing clue numbers
(according to a set of rules) on some of the squares. The puzzle is solved by obtaining the
solutions to a set of clues corresponding to the clue numbers.
The solved puzzle has one letter in each of the blank square, which represent a sequence of
letters (consisting of one or more words in English or occasionally other languages) running
along the rows (called “Across”, or “A”) or along the columns (called “Down” or “D”). Each
numbered square is the beginning of an Across solution or a Down solution. Some of the
across and down solutions will intersect at a blank square, and if the solutions are consistent,
both of them will have the same letter at the intersecting square.
In this problem, you will be given the specifications of the grid, and the solutions in some
random order. The problem is to number the grid appropriately, and associate the answers
consistently with the clue numbers on the grid, both as Across solutions and as Down
solutions, so that the intersecting blank squares have the same letter in both solutions.
Rules for Clue Numbering
The clue numbers are given sequentially going row wise (Row 1 first, and then row2 and so
on)
Only blank squares are given a clue number
A blank square is given a clue number if either of the following conditions exist (only one
number is given even if both the conditions are satisfied)
It has a blank square to its right, and it has no blank square to its left (it has a black square to
its left, or it is in the first column). This is the beginning of an Across solution with that
number
It has a blank square below it, and no blank square above it (it has a black square above it or
it is in the first row). This is the beginning of a Down solution with that number
Constraints

i. 5<=N<=15
ii. 5<=M<=50

Input Format
The input consists of two parts, the grid part and the solution part
The first line of the grid part consists of a number, N, the size of the grid (the overall grid is N
x N) squares. The next N lines correspond to the N rows of the grid. Each line is comma
separated, and has number of pairs of numbers, the first giving the position (column) of the
beginning of a black square block, and the next giving the length of the block. If there are no
black squares in a row, the pair “0,0” will be specified. For example, if a line contains
“2,3,7,1,14,2”, columns 2,3,4 (a block of 3 starting with 2), 7 (a block of 1 starting with 7)
and 14,15 (a block of 2 starting with 14) are black in the corresponding row.
The solution part of the input appears after the grid part. The first line of the solution part
contains M, the number of solutions. The M subsequent lines consist of a sequence of letters
corresponding to a solution for one of the Across and Down clues. All solutions will be in
upper case (Capital letters)
Output
The output is a set of M comma separated lines. Each line corresponds to a solution, and
consists of three parts, the clue number, the letter A or D (corresponding to Across or Down)
and the solution in to that clue (in upper case)
The output must be in increasing clue number order. Ifa clue number has both an Across and
a Down solution, they must come in separate lines, with the Across solution coming before
the Down solution.
Explanation
Example 1
Input
5

5,1
1,1,3,1,5,1
0,0
1,1,3,1,5,1
1,1
5
EVEN
ACNE
CALVE
PLEAS
EVADE

Output
1,A,ACNE
2,D,CALVE
3,D,EVADE
4,A,PLEAS
5,A,EVEN

5. Skateboard
Problem Description
The amusement park at Patagonia has introduced a new skateboard competition. The skating
surface is a grid of N x N squares. Most squares are so constructed with slopes that
possible to direct the skateboard in any of up to three directions of the possible four (North
,East, South or West, represented by the letters N, E, S and W respectively). Some squares
however have a deep drop from the adjacent square from which it
adjacent square. These are represented by D (for Drop) in that square. The objective is to
maneuver the skateboard to reach the South East corner of the grid, marked F.
Each contestant is given a map of the grid, which shows wher
D), where the Final destination is (marked F), and, for each other square, the directions it is
possible to maneuver the skateboard in that square.
The contestant draws lots to determine which of the squares on the boundaries
the North or the West of the grid (the top or the left in the diagram) he or she should start in.
Then, using a map of the grid, he or she needs to try to reach the South East corner
destination by maneuvering the skateboard.

In some cases, it is impossible to reach the destination. For example, in the diagram above, if
one starts at the North East corner (top right in the diagram), the only way is to go is South,
until the Drop square is reached (three squares South), and the contesta

A contestant asks you to figure out the number of squares at the North or West boundary (top
or left boundary in the map) from which it is feasible to reach the destination.

The amusement park at Patagonia has introduced a new skateboard competition. The skating
surface is a grid of N x N squares. Most squares are so constructed with slopes that
possible to direct the skateboard in any of up to three directions of the possible four (North
,East, South or West, represented by the letters N, E, S and W respectively). Some squares
however have a deep drop from the adjacent square from which it is impossible to go to any
adjacent square. These are represented by D (for Drop) in that square. The objective is to
maneuver the skateboard to reach the South East corner of the grid, marked F.
Each contestant is given a map of the grid, which shows where the Drop squares are (marked
D), where the Final destination is (marked F), and, for each other square, the directions it is
possible to maneuver the skateboard in that square.
The contestant draws lots to determine which of the squares on the boundaries
the North or the West of the grid (the top or the left in the diagram) he or she should start in.
Then, using a map of the grid, he or she needs to try to reach the South East corner
destination by maneuvering the skateboard.

cases, it is impossible to reach the destination. For example, in the diagram above, if
one starts at the North East corner (top right in the diagram), the only way is to go is South,
until the Drop square is reached (three squares South), and the contesta

A contestant asks you to figure out the number of squares at the North or West boundary (top
or left boundary in the map) from which it is feasible to reach the destination.

The amusement park at Patagonia has introduced a new skateboard competition. The skating
surface is a grid of N x N squares. Most squares are so constructed with slopes that it is
possible to direct the skateboard in any of up to three directions of the possible four (North
,East, South or West, represented by the letters N, E, S and W respectively). Some squares

is impossible to go to any
adjacent square. These are represented by D (for Drop) in that square. The objective is to
maneuver the skateboard to reach the South East corner of the grid, marked F.

e the Drop squares are (marked
D), where the Final destination is (marked F), and, for each other square, the directions it is

The contestant draws lots to determine which of the squares on the boundaries of the grid on
the North or the West of the grid (the top or the left in the diagram) he or she should start in.
Then, using a map of the grid, he or she needs to try to reach the South East corner

cases, it is impossible to reach the destination. For example, in the diagram above, if
one starts at the North East corner (top right in the diagram), the only way is to go is South,
until the Drop square is reached (three squares South), and the contestant is stuck there.

A contestant asks you to figure out the number of squares at the North or West boundary (top
or left boundary in the map) from which it is feasible to reach the destination.

Constraints
i. 5<=N<=50

Input Format
The first line of the input is a positive integer N, which is the number of squares in each side
of the grid.
The next N lines have a N strings of characters representing the contents of the map for that
corresponding row. Each string may be F, representing the Final destination, D, representing
a drop square, or a set of up to three of the possible four directions (N,E,S,W) in some
random order. These represent the directions in which the contestant can maneuver the
skateboard when in that square.
Output
The output is one line with the number of North or West border squares from which there is a
safe way to maneuver the skateboard to the final destination.
Explanation
Example 1
Input
6
ES,ES,SE,ES,ES,S
SE,ES,SE,ES,ES,S
ES,ES,SE,ES,SE,S
ES,SE,ES,SE,E,D
SE,ES,D,WSE,NES,NS
E,E,NE,E,E,F
Output
9

6. Chakravyuha
Problem Description
During the battle of Mahabharat, when Arjuna was far away in the battlefield, Guru Drona
made a Chakravyuha formation of the Kaurava army to capture YudhisthirMaharaj.
Abhimanyu, young son of Arjuna was the only one amongst the remaining Pandava army
who knew how to crack the Chakravyuha. He took it upon himself to take the battle to the
enemies.
Abhimanyu knew how to get power points when cracking the Chakravyuha. So great was his
prowess that rest of the Pandava army could not keep pace with his advances. Worried at the
rest of the army falling behind, YudhisthirMaharaj needs your help to track of Abhimanyu's
advances. Write a program that tracks how many power points Abhimanyu has collected and
also uncover his trail
A Chakravyuha is a wheel-like formation. Pictorially it is depicted as below

A Chakravyuha has a very well-defined co-ordinate system. Each point on the co-ordinate
system is manned by a certain unit of the army. The Commander-In-Chief is always located
at the centre of the army to better co-ordinate his forces. The only way to crack the

Chakravyuha is to defeat the units in sequential order.
A Sequential order of units differs structurally based on the radius of the Chakra. The radius
can be thought of as length or breadth of the matrix depicted above. The structure i.e.
placement of units in sequential order is as shown below

The entry point of the Chakravyuha is always at the (0,0) co-ordinate of the matrix above.
This is where the 1st army unit guards. From (0,0) i.e. 1st unit Abhimanyu has to march
towards the center at (2,2) where the 25th i.e. the last of the enemy army unit guards.
Remember that he has to proceed by destroying the units in sequential fashion. After
destroying the first unit, Abhimanyu gets a power point. Thereafter, he gets one after
destroying army units which are multiples of 11. You should also be a in a position to tell
YudhisthirMaharaj the location at which Abhimanyu collected his power points.
Input Format:
First line of input will be length as well as breadth of the army units, say N
Output Format:

 Print NxN matrix depicting the placement of army units, with unit numbers
delimited by (\t) Tab character

 Print Total power points collected

 Print coordinates of power points collected in sequential fashion (one per line)

 Constraints: 0 < N <=100

Sample Input and Output
S.
NO.

Input Output

1 2 1 2
4 3
Total Power points : 1
(0,0)

2 5 1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
Total Power points : 3
(0,0)
(4,2)
(3,2)

7. Exam Efficiency
Problem Description
In an examination with multiple choice questions, the following is the exam question pattern.

 X1 number of One mark questions, having negative score of -1 for answering
wrong

 X2 number of Two mark questions, having negative score of -1 and -2 for one
or both options wrong

 X3 number of Three mark questions, having negative score of -1, -2 and -3 for
one, two or all three options wrong

 Score Required to Pass the exam : Y

 For 1,2 and 3 mark questions, 1,2 and 3 options must be selected. Simply put,
once has to attempt to answer all questions against all options.

Identify the minimum accuracy rate required for each type of question to crack the exam.
Calculations must be done up to 11 precision and printing up to 2 digit precision with ceil
value
Input Format:
First line contains number of one mark questions denoted by X1,
Second line contains number of two mark questions denoted by X2
Third line contains number of three mark questions denoted by X3
Fourth line contains number of marks required to pass the exam denoted by Y.
Output Format:
Minimum Accuracy rate required for one mark question is 80%
Minimum Accuracy rate required for Two mark question is 83.33%
Minimum Accuracy rate required for Three mark question is 90%
Note: - If the mark required to pass the exam can be achieved by attempting without
attempting any particular type of question then show message similar to, One mark question
need not be attempted, so no minimum accuracy rate applicable
Sample Input and Output
S.No. Input Output Explanation

1 20
30
30
120

One mark questions need not be
attempted, so no minimum
accuracy rate applicable.
Minimum Accuracy rate required
for Two mark question is 58.33%
Minimum Accuracy rate required
for Three mark question is 72.23%

If one got full marks in two
marks question and three
marks question then total
accuracy can be 0 in one
mark question

In same way it will be done
for two marks and three
marks question

2 20
30
30
170

Minimum Accuracy rate required
for one mark question is 100%
Minimum Accuracy rate required
for Two mark question is 100%
Minimum Accuracy rate required
for Three mark question is 100%

If one got full marks in two
marks question and three
marks question then total
accuracy should be 100% in
one mark question to pass the
exam.

In same way it will be done
for two marks and three
marks question

8. Calculate Salary and PF
Problem Description
Calculate the Final Salary & Final Accumulated PF of an Employee working in ABC
Company Pvt. Ltd. The Company gives two Increments (i.e. Financial Year Increment &
Anniversary Increment) to an Employee in a Particular Year.
The Employee must have Completed 1 Year to be Eligible for the Financial Year Increment.
The Employee who are joining in the month of Financial Year Change (i.e. April) are

considered as the Luckiest Employee's, because after completion of 1 Year, they get Two
Increments
(Financial Year Increment & Anniversary Increment).
Rate of Interest for the Financial Year Increment = 11%.
Rate of Interest for the Anniversary Increment = 12%.
From 4th Year, the Financial Year Increment will be revised to 9%.
From 8th Year, the Financial Year Increment will be revised to 6%.
The Company is giving special Increment for the Employee who have completed 4 years & 8
years respectively.
So, the Anniversary Increment of the Employee for the 4th Year will be 20% and the
Anniversary Increment of the Employee for the 8th year will be 15%.
Calculate the Final Salary after N number of Years as well as Calculate the Accumulated PF
of the Employee after N number of Years.
Please Note that, the Rate of Interest for calculating PF for a Particular Month is 12%.
Moreover, take the upper Limit of the amount if it is in decimal (For e.g. - If any Amount
turns out to be 1250.02, take 1251 for the Calculation.)
Input Format:

i. Joining Date in dd/mm/yy format
ii. Current CTC.

iii. Number of Years for PF & Salary Calculation.

Output Format:
i. Salary after the Specified Number of Years (i.e. CTC after N number of

Years) in the following format
Final Salary =

ii. Accumulated PF of the Employee after N number of Years in the following
format
Final Accumulated PF =

Constraints:
Calculation should be done upto 11-digit precision and output should be printed with ceil
value
Sample Input and Output

S.No. Input Output
1 5

01/01/2016
10000
2

Final Salary = 13924
Final Accumulated PF = 2665

2 19/01/2016
6500
4

Final Salary = 14718
Final Accumulated PF = 4343

9. ISL Schedule
Problem Description
The Indian Soccer League (ISL) is an annual football tournament.
The group stage of ISL features N teams playing against each other with following set of
rules:

i. N teams play against each other twice - once at Home and once Away
ii. A team can play only one match per day

iii. A team cannot play matches on consecutive days
iv. A team cannot play more than two back to back Home or Away matches
v. Number of matches in a day has following constraints

a. The match pattern that needs to be followed is -

 Day 1 has two matches and Day 2 has one match,

 Day 3 has two matches and Day 4 has one match and so on
b. There can never be 3 or more matches in a day

vi. Gap between two successive matches of a team cannot exceed floor(N/2) days
where floor is the mathematical function floor()

vii. Derby Matches (any one)
a. At least half of the derby matches should be on weekend
b. At least half of the weekend matches should be derby matches

Your task is to generate a schedule abiding to above rules.
Input Format:
First line contains number of teams (N).
Next line contains state ID of teams, delimited by space
Output Format:
Match format: Ta-vs-Tb
where Ta is the home team with id a and Tb is the away team with id b.
For each day print the match(es) in following format:-
Two matches:- "#D Ta-vs-Tb Tm-vs-Tn"
One match:- "#D Tx-vs-Ty"
where D is the day id and [a, b, m, n, x, y] are team ids.
Constraints:

i. 8 <= N <= 100

Note :
 Team ids are unique and have value between 1 to N

 Day id starts with 1

 Every 6th and 7th day are weekends

 Derby is a football match between two teams from the same state

Sample Input and Output
S.No. Input Output
1 8

1 2 5 4 3 1 6 6
#1 T1-vs-T6 T3-vs-T5
#2 T7-vs-T4
#3….and so on

Note: - There can be multiple correct answers for the same test cases. For better
understanding of test case refer this PDF. This PDF contains one of the correct answer for a
test case.

Explanation:
There are 8 teams with following information: -

Team ID 1 2 3 4 5 6 7 8
State ID 1 2 5 4 3 1 6 6

10. Longest Possible Route
Problem Description
Given an MxN matrix, with a few hurdles arbitrarily placed, calculate the cost of longest
possible route from point A to point B within the matrix.
Input Format:

i. First line contains 2 numbers delimited by whitespace where, first number M
is number of rows and second number N is number of columns

ii. Second line contains number of hurdles H followed by H lines, each line will

contain one hurdle point in the matrix.
iii. Next line will contain point A, starting point in the matrix.
iv. Next line will contain point B, stop point in the matrix.

Output Format:
Output should display the length of the longest route from point A to point B in the matrix.
Constraints:

i. The cost from one position to another will be 1 unit.
ii. A location once visited in a particular path cannot be visited again.

iii. A route will only consider adjacent hops. The route cannot consist of diagonal
hops.

iv. The position with a hurdle cannot be visited.
v. The values MxN signifies that the matrix consists of rows ranging from 0 to

M-1 and columns ranging from 0 to N-1.
vi. If the destination is not reachable or source/ destination overlap with hurdles,

print cost as -1.

Sample Input and Output
S. No. Input Output Explanation
1 3 10

3
1 2
1 5
1 8
0 0
1 7

24 Here matrix will be of size 3x10 matrix with a hurdle at
(1,2),(1,5) and (1,8) with starting point A(0,0) and stop point
B(1,7)

3 10
3 -- (no. of hurdles)
1 2
1 5
1 8
0 0 -- (position of A)
1 7 -- (position of B)

(->) count is 24. So final answer will be 24. No other route
longer than this one is possible in this matrix.

2 2 2
1
0 0
1 1
0 0

-1 No path is possible in this 2*2 matrix so answer is -1

11. Min Product array
Problem Description
The task is to find the minimum sum of Products of two arrays of the same size, given that k
modifications are allowed on the first array. In each modification, one array element of the
first array can either be increased or decreased by 2.
Note- the product sum is Summation (A[i]*B[i]) for all i from 1 to n where n is the size of
both arrays
Input Format:

i. First line of the input contains n and k delimited by whitespace
ii. Second line contains the Array A (modifiable array) with its values delimited

by spaces
iii. Third line contains the Array B (non-modifiable array) with its values

delimited by spaces

Output Format:
Output the minimum sum of products of the two arrays
Constraints:

i. 1 ≤ N ≤ 10^5
ii. 0 ≤ |A[i]|, |B[i]| ≤ 10^5

iii. 0 ≤ K ≤ 10^9

Sample Input and Output
S.No. Input Output
1 3 5

1 2 -3
-2 3 -5

-31

2 5 3
2 3 4 5 4
3 4 2 3 2

25

Explanation for sample 1:
Here total numbers are 3 and total modifications allowed are 5. So we modified A[2], which
is -3 and increased it by 10 (as 5 modifications are allowed). Now final sum will be
(1 * -2) + (2 * 3) + (7 * -5)
-2 + 6 - 35
-31
-31 is final answer.
Explanation for sample 2:
Here total numbers are 5 and total modifications allowed are 3. So we modified A[1], which
is 3 and decreased it by 6 (as 3 modifications are allowed).
Now final sum will be
(2 * 3) + (-3 * 4) + (4 * 2) + (5 * 3) + (4 * 2)
6 - 12 + 8 + 15 + 8
25
25 is final answer.

12. Consecutive Prime Sum
Problem Description
Some prime numbers can be expressed as a sum of other consecutive prime numbers. For
example, 5 = 2 + 3, 17 = 2 + 3 + 5 + 7, 41 = 2 + 3 + 5 + 7 + 11 + 13. Your task is to find out
how many prime numbers which satisfy this property are present in the range 3 to N subject
to a constraint that summation should always start with number 2.
Write code to find out the number of prime numbers that satisfy the above-mentioned
property in a given range.

S.
No.

Input Output Comment

1 20 2 (Below 20, there are 2 such members: 5 and 17)
5 = 2+3
17 = 2+3+5+7

2 15 1

Input Format:
First line contains a number N
Output Format:
Print the total number of all such prime numbers which are less than or equal to N.

Constraints:
 2<N<=12,000,000,000

13. kth largest factor of N
Problem Description
A positive integer d is said to be a factor of another positive integer N if when N is divided by
d, the remainder obtained is zero. For example, for number 12, there are 6 factors 1, 2, 3, 4, 6,
12. Every positive integer k has at least two factors, 1 and the number k itself.Given two
positive integers N and k, write a program to print the kth largest factor of N.
Input Format:
The input is a comma-separated list of positive integer pairs (N, k)
Output Format:
The kth highest factor of N. If N does not have k factors, the output should be 1.
Constraints:
1<N<10000000000. 1<k<600.You can assume that N will have no prime factors which are
larger than 13.
Example 1
Input:
12,3
Output:
4
Explanation:
 N is 12, k is 3. The factors of 12 are (1,2,3,4,6,12). The highest factor is 12 and the third
largest factor is 4. The output must be 4

14. Coins Distribution Question (or Coins Required Question)
Problem Description
Find the minimum number of coins required to form any value between 1 to N, both
inclusive. Cumulative value of coins should not exceed N. Coin denominations are 1 Rupee,
2 Rupee and 5 Rupee.

Let's understand the problem using the following example. Consider the value of N is 13,
then the minimum number of coins required to formulate any value between 1 and 13, is 6.
One 5 Rupee, three 2 Rupee and two 1 Rupee coins are required to realize any value between
1 and 13. Hence this is the answer.
However, if one takes two 5 Rupee coins, one 2 rupee coins and two 1 rupee coins, then to all
values between 1 and 13 are achieved. But since the cumulative value of all coins equals 14,
i.e., exceeds 13, this is not the answer.
Input Format
A single integer value
Output Format
Four Space separated Integer Values
1st – Total Number of coins
2nd – number of 5 Rupee coins.
3rd – number of 2 Rupee coins.
4th – number of 1 Rupee coins.
Constraints
0<n<1000
Sample Input:
13
Sample Output:
6 1 3 2

S. NO. Debugging Experiments
1. Write error/output in the following code.

abc.py
deffunc(n):
 return n + 10

func('Hello')

2. Write the output of the following code.

if not a or b:
 print 1
elif not a or not b and c:
 print 2
elif not a or b or not b and a:
 print 3
else:
 print 4

3. Write error/output in the following code.

count = 1

defdoThis():

 global count

 for i in (1, 2, 3):
 count += 1

doThis()

print count

4. Write the output of the following code.

check1 = ['Learn', 'Quiz', 'Practice', 'Contribute']
check2 = check1
check3 = check1[:]

check2[0] = 'Code'
check3[1] = 'Mcq'

count = 0
for c in (check1, check2, check3):
 if c[0] == 'Code':
 count += 1
 if c[1] == 'Mcq':
 count += 10

print count

5. What is the output of the following program?

D = dict()
for x in enumerate(range(2)):
 D[x[0]] = x[1]
 D[x[1]+7] = x[0]

print(D)
6. What is the output/error in the following program?

D = {1 : 1, 2 : '2', '1' : 1, '2' : 3}
D['1'] = 2
print(D[D[D[str(D[1])]]])

7. What is the output/error in the following program?

D = {1 : {'A' : {1 : "A"}, 2 : "B"}, 3 :"C", 'B' : "D", "D": 'E'}
print(D[D[D[1][2]]], end = " ")
print(D[D[1]["A"][2]])

8. What is the output/error in the following program?

D = dict()
for i in range (3):
 for j in range(2):
 D[i] = j
print(D)

9. What is the output/error in the following program?

x = ['ab', 'cd']
for i in x:
x.append(i.upper())
print(x)

10. What is the output/error in the following program?

i = 1
while True:
 if i%3 == 0:
 break
 print(i)
i + = 1

B.TECH FIRST YEAR

Course Code ACSBS0103Z L T P Credit

Course Title Fundamentals of Computer Science 3 0 0 0

Course objective:
The course covers various operations, conditional statements and looping constructs in C. The course
aims to solve complex problems using functions and arrays in C.
Pre-requisites:Basic Knowledge of Computer

Course Contents / Syllabus

UNIT-I General problem Solving concepts 5 hours
Algorithm, and Flowchart for problem solving with Sequential Logic Structure, Decisions and Loops.
Programming using C: applications of C programming, Structure of C program, Overview of
compilation and execution process in an IDE, transition from algorithm to program, Syntax, logical
errors and Run time errors, object and executable code
UNIT-II Imperative languages&Operators 7 hours
Introduction to imperative language; syntax and constructs of a specific language (ANSI C)
Types Operator and Expressions with discussion of variable naming and Hungarian Notation: Variable
Names, Data Type and Sizes (Little Endian Big Endian), Constants, Declarations, Arithmetic Operators,
Relational Operators, Logical Operators, Type Conversion, Increment Decrement Operators, Bitwise
Operators, Assignment Operators and Expressions, Precedence and Order of Evaluation, proper variable
naming and Hungarian Notation.
UNIT-III Control Flow 6 hours
Control Flow with discussion on structured and unstructured programming: Statements and Blocks, If-
Else-If, Switch, Loops – while, do, for, break and continue, goto labels, structured and un- structured
programming.
UNIT-IV Functions and Program Structure 8 hours
Functions and Program Structure with discussion on standard library: Basics of functions, parameter
passing and returning type, C main return as integer, External, Auto, Local, Static, Register Variables,
Scope Rules, Block structure, Initialization, Recursion, Pre-processor, Standard Library Functions and
return types.
UNIT-V Pointers and Arrays 8 hours
Pointers and address, Pointers and Function Arguments, Pointers and Arrays, Address Arithmetic,
character Pointers and Functions, Pointer Arrays, Pointer to Pointer, Multi-dimensional array and
Row/column major formats, Initialization of Pointer Arrays, Command line arguments, Pointer to
functions, complicated declarations and how they are evaluated.
Structures: Basic Structures, Structures and Functions, Array of structures, Pointer of structures, Self-
referral structures, Table look up, typedef, unions, Bit-fields
UNIT-VI Input and Output: 6 Hours
Standard I/O, Formatted Output – printf, Formated Input – scanf, Variable length argument list, file
access including FILE structure, fopen, stdin, stdout and stderr, Error Handling including exit, perror
and error.h, Line I/O, related miscellaneous functions.
Unix system Interface: File Descriptor, Low level I/O – read and write, open, create, close and unlink,
Random access – seek, Discussions on Listing Directory, Storage allocator.
Programming Method: Debugging, Macro, User Defined Header, User Defined Library Function,
makefile utility
Course outcome: At the end of course, the student will be able to

CO 1 Acquire a broad perspective about the uses of computers in engineering industry. K2

CO 2 Understand the concept of computers, algorithm and algorithmic thinking. K2

CO 3 Apply conditional statements and looping constructs. K3

CO 4 Implement array and perform operations on it. K3

CO 5 Understand the more advanced features of the C language K2

Text Books
1. B. W. Kernighan and D. M. Ritchi, The C Programming Language, 1988, 2nd Edition, PHI.
2. B. Gottfried, Programming in C, Schaum Outline Series, 1996, 2nd Edition, McGraw Hill Companies
Inc.
Reference Books

1. Herbert Schildt, C: The Complete Reference, 2000, 4th edition, McGraw Hill.
2. YashavantKanetkar, Let Us C, 2017, 15th edition, BPB Publications.

B.TECH FIRST YEAR
Course Code ACSBS0153Z L T P Credit
Course Title Fundamentals of Computer Science Lab 0 0 4 0
Suggested List of Experiments CO
1. Algorithm and flowcharts of small problems like GCD 1
2. Structured code writing with: 1
i. Small but tricky codes 1
ii. Proper parameter passing 1
iii. Command line Arguments 1
iv. Variable parameter 2
v. Pointer to functions 2

vi. User defined header 3

vii. Make file utility 3
viii. Multi file program and user defined libraries 4
ix. Interesting substring matching / searching programs 4
x. Parsing related assignments 4

Lab Course Outcome:
CO 1 Read, understand and trace the execution of programs written in C language. K2
CO 2 Write the C code for a given algorithm. K2
CO 3 Implement Programs with pointers and arrays, perform pointer arithmetic, and

use the pre-processor.
K3

CO 4 Write programs that perform operations using derived data types. K2
CO5 Implement String Handling K3

B.TECH FIRST YEAR

Course Code ACSE0202Z L T P Credit

Course Title Problem solving using Advanced Python 3 1 0 0

Course objective:The objective of the course is to make its students able
1 To learn the Object Oriented Concepts in Python
2 To learn the concept of reusability through inheritance and polymorphism
3 To impart the knowledge of functional programming

4 To learn the concepts of designing graphical user interfaces
5 To explore the knowledge of standard Python libraries

Pre-requisites:Students are expected to have basic knowledge of programming concepts
of python programming.

Course Contents / Syllabus

UNIT-I Classes and Objects 8 hours
Introduction: Python Classes and objects, User-Defined Classes, Encapsulation, Data hiding
, Class Variables and Instance Variables, Instance methods, Class method, static methods,
constructor in python, parametrized constructor, Magic Methods in python, Object as an
argument, Instances as Return Values, namespaces
UNIT-II Object Oriented Concepts 8 hours
Introduction to the Specialization, Inheritance, Types of inheritance, Invoking the Parent
Class's Method, Method overriding, abstract class, MRO and super (), Polymorphism
Introspection: Introspecting types, Introspecting objects, Introspecting scopes, inspect
modules, introspect tools

UNIT-III Functional Programming 8 hours
Map, filter, Reduce, Comprehensions, Immutability, Closures and Decorators, generators,

Co-routines, iterators, Declarative programming

UNIT-IV GUI Programming 8 hours
Ipywidgets Package, Numeric Widgets, Boolean Widgets, Selection Widgets, String
Widgets, Date Picker, Color Picker, Container Widgets, Creating a GUI Application,

Tkinter, button, canvas.

UNIT-V Libraries in Python 8 hours
NumPy: Basic Operation, Indexing, slicing and Iterating, multidimensional arrays, NumPy
Data types, Reading and writing data on Files,Pandas : Series and Data Frames, Grouping,
aggregation, Merge Data Frames, Generate summary tables, Group data into logical pieces,
Manipulation of data. SciPy: Introduction to SciPy, Create function, modules of SciPy.
Matplotlib: Scatter plot, Bar charts, histogram, Stack charts, Legend title Style, Figures and
subplots, Plotting function in pandas, Labelling and arranging figures, Save plots. Seaborn:
style function, color palettes, distribution plots, category plot, regression plot.
Course outcome: At the end of course, the student will be able to

CO 1 Define classes and create instances in python K1, K2

CO 2 Implement concept of inheritance and polymorphism using
python

K3

CO 3 Implement functional programming in python K2

CO 4 Create GUI based Python application K3

CO 5 Applythe concept of Python libraries to solve real world
problems

K3, K6

Text books
(1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"—Third Edition,
Apress
(2) Peter Morgan, Data Analysis from Scratch with Python, AI Sciences
(3) Allen B. Downey, “Think Python: How to Think Like a Computer Scientist”, 2nd
edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016
(4) Miguel Grinberg, Developing Web applications with python, OREILLY
Reference Books

(1) Dusty Phillips, Python 3 Object-oriented Programming - Second Edition, O’Reilly
(2) Burkhard Meier, Python GUI Programming Cookbook - Third ,Packt
(3) DOUG HELLMANN, THE PYTHON 3 STANDARD LIBRARY BY EXAMPLE, :Pyth
3 Stan Libr Exam _2 (Developer's Library) 1st Edition, Kindle Edition.

(4) Kenneth A. Lambert, ―Fundamentals of Python: First Programsۅ, CENGAGE Learning,
2012.
E-books& E-Contents:
(1)https://www.pdfdrive.com/a-python-book-beginning-python-advanced-python-and-python- exercises-
e125280.html
(2)https://www.pdfdrive.com/a-python-book-beginning-python-advanced-python-and-python-e9236005.html
(3)https://www.pdfdrive.com/learn-python-in-one-day-and-learn-it-well-python-for-beginners-with-hands-on-
project-the-only-book-you-need-to-start-coding-in-python-immediately-e183833259.html
(4)https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-
for-intermediates-d180663309.html
(5)https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-
for-intermediates-d180663309.html
(6) https://realpython.com/tutorials/advanced/
Reference Links
Unit 1-https://nptel.ac.in/courses/106/106/106106145/
Unit-2-https://www.python-course.eu/python3_inheritance.php
Unit -3 https://realpython.com/courses/functional-programming-python/
Unit-4: https://realpython.com/python-gui-tkinter/
Unit-5: https://nptel.ac.in/courses/106/107/106107220/
https://nptel.ac.in/courses/106/106/106106212/
https://nptel.ac.in/courses/106/105/106105152/
https://www.youtube.com/watch?v=98YeQpmQeH8
https://www.youtube.com/watch?v=u9x475OGj_U
https://www.youtube.com/watch?v=HFW7eA9wUxY
https://www.youtube.com/watch?v=byHcYRpMgI4
https://www.youtube.com/watch?v=9N6a-VLBa2I
https://www.youtube.com/watch?v=Ta1bAMOMFOI
https://www.youtube.com/watch?v=FsAPt_9Bf3U
https://www.youtube.com/watch?v=LwPTfwlry1s
https://www.youtube.com/watch?v=YXPyB4XeYLA
https://www.youtube.com/watch?v=dVr7r7QgLrk&t=21s
Students may follow Links given below to get certification in course of Advanced python
Link for Certification in Python
https://swayam.gov.in/nd1_noc20_cs36/preview
https://swayam.gov.in/nd1_noc20_cs46/preview

B.TECH FIRST YEAR
Lab Code ACSE0252Z L T P Credit
Lab Title Problem Solving using Advanced Python Lab 0 0 2 0
Course outcome:At the end of course, the student will be able to
CO 1 Write programs to create classes and instances in python K1, K3

CO 2 write programs to Implement concept of inheritance and polymorphism using
python

K2, K3

CO 3 Write programs using functional programming in python K4

CO 4 write programs to create GUI based Python application K3, K4

CO 5 Developing real life applications using python libraries to solve real world
problems

K4, K6

List of Experiment :
S.No. Name of Experiment

 Class and Methods

1 Python program to demonstrate instantiating a class.

2 Python program to demonstrate use of class method and static method

3 Python program to implement constructors.

4 Python program to show that the variables with a value assigned in the class
declaration, are class variables and variables inside methods and constructors are
instance variables.

5 Python program to create Bank-account class with deposit, withdraw function

 Inheritance

6 Python program to demonstrate single inheritance

7 Python program to demonstrate multilevel inheritance

8 Python program to demonstrate multiple inheritance

9 Python program to demonstrate hierarchical inheritance

10 Python program to demonstrate hybrid inheritance

 Polymorphism

11 Python program to demonstrate in-built polymorphic function

12 Python program to demonstrate user defined polymorphic functions

13 Python program to demonstrate method overriding

 Functional Programming

14 Python program to demonstrate working of map

15 Python program to demonstrate working of filter

16 Python program to demonstrate working of reduce

17 Python program to demonstrate immutable data types

18 Python program to demonstrate Monkey Patching in Python

19 Python program to demonstrate decorators with parameters in python

20 Python program to demonstrate conditional decorators

21 Python program to demonstrate nested decorators

22 Python program to demonstrate chain multiple decorators

23 Python program to demonstrate use of generators

24 Python program to demonstrate working of iterators

25 Write a Python program to create a table and insert some records in that table.
Finally selects all rows from the table and display the records.

 GUI Programming

26 Python Program to understand working of various Tkinter widgets

27 Create a Distance-time GUI calculator using Tkinter

28 Write a NumPy program to calculate the difference between the maximum and the
minimum values of a given array along the second axis.

29 Write a Python program to create a 2-D array with ones on the diagonal and zeros
elsewhere. Now convert the NumPy array to a SciPy sparse matrix in CSR format.

30 Write a Python program to add, subtract, multiple and divide two Pandas Series.

31 Write a program to Create Your Plot using python. Also add and delete axes.

32 Write a program to plot data using seaborn and show the plot.

B.TECH FIRST YEAR

Course Code ABT0201Z L T P Credit

Course Title Introduction to Biotechnology 3 0 0 0

Course objective: 1. To develop a basic understanding of biotechnology.
2. To provide an overview of cell biology, microbiology and biotechnological advancements

Pre-requisites: Students should know about basic concept of biology

Course Contents / Syllabus

UNIT-I Biochemistry
Component of the cell, structure and biochemical functions, Biomolecules-Carbohydrates, lipids, proteins,
Nucleic acids, Structure and classification of enzymes

UNIT-II Cell Biology and Microbiology
Eukaryotic, Prokaryotic cells, Cell cycle – Mitosis and Meiosis, History and development of Microbiology,
Classification and Nomenclature of Microorganisms - concept of kingdom-protista, prokaryote and eukaryotes

UNIT-III Molecular Biology
Introduction to nucleic acids: Nucleic acids as genetic material, Structure and physicochemical properties of
elements in DNA and RNA, Biological significance of differences in DNA and RNA.

UNIT-IV Immunology
Cells of immune system, Development, maturation, activation and differentiation of T-cells and B-cells,
Phagocytosis process

UNIT-V Biotechnology Applications
Industrial production, Drug discovery and development, applications of biotechnology include GMO
(genetically modified organism), biopesticides, insulin, gene therapy, transgenic animals, bioremediation,
biotechnology sector in India

Course outcome: After completion of this course students will be able to
CO 1 Acquire the basic knowledge of biomolecules and their functions.

CO 2 Understand the concept of cell structure and microbiology.

CO 3 Understand the concept of nucleic acids and their key functions

CO 4 Understand the concept of immune system and various components
involved in it.

CO 5 Describe the wide applications of biotechnology and concept of
bioinformatics.

Text books (Atleast3)
1. Introduction To Biotechnology 3rd Edition by Thieman and William, Pearson
2. Biotechnology by BD Singh. Kalyani Publishers.

Reference Books (Atleast 3)
1. Biology 12th Edition by Raven and George Johnson and Kenneth Mason and Jonathan Losos and Tod

Duncan. McGrawHill Publications

2. TEXTBOOK OF BIOTECHNOLOGY by PATNAIK, McGraw Hill

3. Basic Biotechnology3rd Edition by Colin Ratledge&Bjorn Kristiansen, Cambridge
University Press

NPTEL/ Youtube/ Faculty Video Link:
Unit 1 https://www.youtube.com/watch?v=DhwAp6yQHQI

https://www.youtube.com/watch?v=f7jRpniCsaw

Unit 2 https://www.youtube.com/watch?v=Bhe6Tj2Ebys

Unit 3 https://www.youtube.com/watch?v=jLyi2K-29xU

Unit 4 https://www.youtube.com/watch?v=Dyv6YiH5rME

Unit 5 https://www.youtube.com/watch?v=2zLn-RngMU4

B.TECH FIRST YEAR

Course Code ABT0251Z L T P Credit
Course Title Introduction to Biotechnology Lab 0 0 2 0

Suggested list of Experiment
Sr. No. Name of Experiment CO

1 Estimation of carbohydrates 1

2 Preparation and study of mitosis in onion root tips. 1

3 Mitotic and meiotic studies in grasshopper testes 1

4 Preparation and sterilization of equipment and culture media. 1

5 Enumeration of bacteria from soil samples. 1

6 Demonstration of agarose gel electrophoresis for DNA visualization. 1

7 Introduction to types of sequence databases (Nucleotide & Protein) 2

8 Retrieving sequences from the databases 2

 Lab Course Outcome: After completion of this course students will be able to:
CO 1 Understand the basic techniques of biochemistry, microbiology and cell

biology
CO 2 Understand the applications of biotechnology and bioinformatics.

B.TECH FIRST YEAR

Course Code ACSE0201Z L T P Credit

Course Title Programming for Problem Solving using C 3 1 0 0

Course objective:The objective of the course is to make its students able
1 To understand basic concepts of C-programming language
2 To implement C programs to solve complex problems
3 To enhance debugging, analysing and problem-solving skills
4 To create diversified solutions for real world applications using C language
5 To acquire the knowledge of variable allocation andbinding, conditional statement, control

flow, types, function, pointer, parameter passing, array, structure and file handling to solve
real world problems

Pre-requisites:Students are expected to be able to open command prompt window or terminal
window, edit a text file, download and install software, and understand basic programming concepts.

Course Contents / Syllabus

UNIT-I Basic concepts 8hours
Introduction to components of a computer system: Memory, processor, I/O Devices, operating system,
Concept of Assembler, compiler, interpreter, linker and loader.
Number System: introduction to number system, binary arithmetic.
Concept of algorithms, Flow Charts.

UNIT-II Introduction to Programming 8 hours
Programming using C:applications of C programming, Structure of C program, Overview of compilation
and execution process in an IDE, transition from algorithm to program, Syntax, logical errors and Run
time errors, object and executable code,Tokens of C language: Keywords, identifiers, constant, data
types.

Arithmetic expressions and precedence: Operators,operator precedence and associativity, type
conversion, mixed operands, Pitfalls/Issues with sizeof () usage.

UNIT-III Decision Control Statements, pre-processor directives 8 hours
Conditional Branching: if, else-if, nested if - else, switch statements, use of break and default with
switch.
Iteration and loops:Concept of loops, for, while and do-while, multiple loop variables, use of break and
continue statements, nested loop.
Pre-processor directives: defining and calling macros, file inclusion, conditional compilation.
Pointers: defining and declaring pointer, pointer arithmetic and scaling, Pointer Aliasing.

UNIT-IV Functions and Arrays 8 hours
Functions: Concept of Sub-programming, function, types of functions, passing parameters to functions:
call by value, call by reference, recursive functions, scope of variable, local and global variables, Nesting
of Scope, Storage classes: Auto, Register, Static and Extern

Arrays: Array notation and representation (one and two dimensional), array using pointers, manipulating
array elements, 2-d arrays used in matrix computation. Strings and C string library, Structure, union,
Array of structures, Self-referential structures, passing arrays and structure as arguments
Searching techniques (Linear, Binary Search), Sorting Algorithms (Bubble, Insertion and Selection)
Introduction to dynamic memory allocation (malloc(), calloc(), realloc(), free())
UNIT-V File handling and Introduction to Embedded Programming 8 hours

File handling: File Pointer, File I/O functions and modes, Input and Output using file pointers, Character

Input and Output with Files.
Introduction to Embedded Programming: Embedded systems, Introduction to 8051microcontrolller,
Installing the Keil software and loading the project, Configuring the simulator, Building the target,
Running the simulation, Dissecting the program.
Case Study: Intruder Alarm System.

Course outcome: At the end of course, the student will be able to

CO 1 Develop simple algorithms for arithmetic and logical problems. K2

CO 2 Implement and trace the execution of programs written in C
language.

K1, K2, K4

CO 3 Implement conditional branching and iteration K3

CO 4 Use function, arrays and structures to develop algorithms and
programs.

K2, K6

CO 5 Use searching and sorting algorithm to arrange data and use file
handling for developing real life projects

K2, K4

Textbooks:
(1) Herbert Schildt, “C: The Complete Reference”, OsbourneMcGraw Hill, 4th Edition, 2002.

(2) E Balaguruswami, “Computer Concepts and Programming in C”, McGraw Hill, 2010.

(3) Michael J. Pont, “Embedded C”, Addison-wesley Pearson Education, 2002.

Reference Books:

(1) The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.

(2) Yashwant P. Kanetkar“Let Us C”, BPB publication, 2017.

(3) Computer Basics and C Programming by V. Rajaraman, PHI Learning pvt. Limited, 2015.

(4) Yashwant P. Kanetkar, “Working with C”, BPB publication, 2003.

E-Book Links:

(1) https://en.wikibooks.org/wiki/C_Programming

(2) https://en.wikibooks.org/wiki/A_Little_C_Primer

(3) https://www.goodreads.com/book/show/6968572-ansi-c-programming

(4)https://www.pdffiller.com/347652461-projects-in-c-by-yashwant-kanetkar-pdfpdf-c-projects-
yashwant-kanetkar-pdf-form-
(5)http://www.freebookcentre.net/programming-books-download/Lecture-Notes-On-C-Programming-by-
L.-V.-Narasimha-Prasad-and-E.-Krishnarao-Patro.html
Reference Links:

(1) https://nptel.ac.in/courses/106/104/106104128/

(2)https://nptel.ac.in/courses/106/104/106104074/

(3)https://nptel.ac.in/courses/106/102/106102066/

(4)https://nptel.ac.in/courses/106/105/106105171/

(5)https://www.youtube.com/watch?v=IdXrCPzNnkU&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=4
(6)https://www.youtube.com/watch?v=L2oataK7F10&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=11

(7)https://www.youtube.com/watch?v=K538VFFmFGc&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=14
(8)https://www.youtube.com/watch?v=HyDpW7Al6_E&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=15
(9)https://www.youtube.com/watch?v=0g82dDC-mtc&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=17
(10)https://www.youtube.com/watch?v=d1EHD8RoLDQ&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=19
(11)https://www.youtube.com/watch?v=5xJ1GXTa7IU&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=21

(12)https://www.youtube.com/watch?v=I9828WOCEMg&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=26

(13)https://www.youtube.com/watch?v=V7AZuMuJmXY&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=32

(14)https://www.youtube.com/watch?v=AJvCmpt1UU8&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=37

(15)https://www.youtube.com/watch?v=1iwmwEJhcMw&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=39

(16)https://www.youtube.com/watch?v=K4qXMLItABI&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=45

(17)https://www.youtube.com/watch?v=LoIe_9cTtPE&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=53

(18)https://www.youtube.com/watch?v=kDDd7AmXq1w&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=55

(19)https://www.youtube.com/watch?v=Z_0xXmOgYtY&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=58

(20)https://www.youtube.com/watch?v=u60YRSB2isQ&list=PLJ5C_6qdAvBFzL9su5J-FX8x80BMhkPy1&index=61

B.TECH FIRST YEAR
Lab Code ACSE0251Z L T P Credit
Lab Title Programming for Problem Solving Using C Lab 0 0 2 0
Course outcome: At the end of course, the student will be able to
CO 1 Write programs for arithmetic and logical problems. K1, K3

CO 2 write programs for conditional branching, iteration and recursion K2, K3

CO 3 Write programs using functions and synthesize a complete program using divide
and conquer approach

K4

CO 4 write programs using arrays, pointers and structures K3, K4

CO 5 Write programs to perform input/output operations on files K3, K4

List of Experiment:
S.No. Fundamental Experiments

1. WAP that calculate the simple interest and compound interest when principal, rate of
interest and time are given.

2. WAP that swaps values of two variables using a third variable and without using third
variable

3. WAP to compute the roots of quadratic equations.

4. WAP that accepts the marks of 5 subjects and finds the percentage marks obtained by
the student.It also prints grades according to the following criteria:
Between 90-100%-----------Print 'A'
80-90%------------------------Print 'B'
60-80%------------------------Print 'C'
Below 60%-------------------Print 'D'

5. WAP to simulate the calculator (Arithmetic operations: +, -, /, *).

6. Write a menu driven program that computes the area of geometrical figures such as
rectangle, square, circle and triangle.

7. WAP to find the factorial of a given number.

8. WAP to print the Fibonacci series.

9. WAP to check whether the entered number is prime or not.

10. WAP to convert the binary number to decimal number and vice versa

11. WAP to print allArmstrong numbers from 1 to N.

 Arrays

12. WAP to find the minimum and maximum element of the array.

13. WAP to search an element in an array using Linear Search.

14. Write programs to sort the elements of the array in ascending order using Bubble Sort
technique.

15. WAP to compute the multiplication of two matrices.

 Pointers and Functions

16. WAP to swap the values of two numbers using the call by pointer.

17. WAP to compute the factorial of the number using the recursive function factorial ().

18. WAP to compute the length of the string using the user defined function xstrlen().

19. WAP to concatenate two strings using the user defined function xstrcat().

 Strings and Structures

20. WAP to reverse the string. Also check whether the given string is in palindrome or not.

21. WAP to create structure of a student having member name, roll number, age, marks.
Also, create an array of structure of 50 students and display the detail of all the students
having marks more than 70.

 File Handling

22. WAP to copy the contents of one file onto another file.

23. WAP to compare the contents of two files and determine whether they are same or not.

24. WAP to check whether the given word exist in a file or not. If yes, then find the
number of times it occurs.

 Dynamic Memory Allocation

25. WAP to create an array using dynamic memory allocation.

 Embedded C

26. Installation and working with Keil.

27. Implement Intruder alarm system.

B.TECH FIRST YEAR

Course Code ACSBS0203Z L T P Credits

Course Title Data Structures and Algorithms 3 1 0 0

Course Objectives:
The course covers the basic data structures, algorithm, and efficiency of algorithm, introduction to array,
stack, Queue, link list and their implementation. The course aims to give understanding of various
searching and sorting algorithms and implementation of tree data structure.
Pre-requisites: Basics of C programming &algorithm

Course Contents / Syllabus

UNIT-I Basic Terminologies and Introduction to Algorithm & Data
Organization

8 hours

Algorithm specification, Recursion, Performance analysis, Asymptotic Notation - The Big-O, Omega and
Theta notation, Programming Style, Refinement of Coding - Time-Space Trade Off, Testing, Data
Abstraction
UNIT-II Linear Data Structure 8 hours
Array, Stack, Queue, Linked-list and its types, Various Representations, Operations & Applications of
Linear Data Structures
UNIT-III Non-linear Data Structure 8 hours
Trees (Binary Tree, Threaded Binary Tree, Binary Search Tree, B & B+ Tree, AVL Tree, Splay Tree) and
Introduction of Graphs (Directed, Undirected), Various Representations, Operations & Applications of
Trees
UNIT-IV Searching and Sorting on Various Data Structures 8 hours
Sequential Search, Binary Search, Comparison Trees, Breadth First Search, Depth First Search Insertion
Sort, Selection Sort, Shell Sort, Divide and Conquer Sort, Merge Sort, Quick Sort, Heapsort, Introduction
to Hashing
UNIT-V File & Graph 8 hours
File: Organization (Sequential, Direct, Indexed Sequential, Hashed) and various types of accessing schemes.
Graph: Basic Terminologies, Representations, Operations and Applications of Graphs, Graph search and traversal
algorithms and complexity analysis.
Course outcome: At the end of course, the student will be able to

CO1 Analyzeand implement arrays, linked lists, stacks, queues to solve complex problems. K3, K4
CO2 Compare the computational efficiency of the sorting and searching algorithms. K4

CO3 Assessthe memory representation oftree and perform various operations on these data
structure.

K3

CO4 Apply the concept of recursion to solve the real-world problems. K3

CO5 Develop the algorithms using graph data structures. K6

Text Books
1. E. Horowitz, S. Sahni, S. A-Freed, Fundamentals of Data Structures, 2008, Universities Press.
2. A. V. Aho, J. E. Hopperoft, J. D. UIlman,Data Structures and Algorithms, 1983, Pearson.

Reference Books
1. Donald E. Knuth, The Art of Computer Programming: Volume 1: Fundamental Algorithms, 1968,

Addison-Wesley.
2. Thomas, H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms,

2009, 3rd Edition, The MIT Press.
3. Pat Morin,Open Data Structures: An Introduction (Open Paths to Enriched Learning), 2013, 31st Edition,

UBC Press.

B.TECH FIRST YEAR
Course Code ACSBS0253Z L T P Credit
Course Title Data Structures and Algorithms Lab 0 0 4 0
Suggested List of Experiments CO

1. Program to create and display linear array CO1
2. Program to insert a data item at any location in a linear array O1

3. Program to delete a data item from a linear array CO1
4. Program to implement linear search in an Array CO1
5. Program to implement binary search in the sortedarray without recursion CO1,

CO4
6. Program to implement binary search in the sortedarray with recursion CO1,

CO4
7. Program to implement bubble sort in a non-recursive way CO1,

CO4
8. Program to implement selection sort in a non-recursive way CO1,

CO4
9. Program to implement insertion sort in a non-recursive way CO1,

CO4
10. Program to implement merge sort in a non-recursive way CO1,

CO4
11. Program to implement merge sort in a recursive way CO1,

CO4
12. Program to implement Queue Using array CO1,

CO3
13. Program to implement Circular Queue Using array CO1,

CO3
14. Program to implement Stack Operation using array CO1,

CO3
15. Program to implement the Single Linked List
a. Insertion b. Deletion c. Traversal d. Reversal
e. Searching f. Updation g. Sorting h. Merging

CO1

16. Program to implement the doubly Linked List
a. Insertion b. Deletion c. Traversal d. Reversal
e. Searching f. Updation g. Merging

CO1

17. Program to implement the circularly Single Linked List
a. Insertion b. Deletion c. Traversal d. Reversal
e. Searching f. Updation

CO1

18. Program to implement Queue Using linked list CO1,
CO3

19. Program to implement Circular Queue Using linked list CO1,
CO3

20. Program to implement Priority Queue Using linked list CO1,
CO3

21. Program to implement Stack Operation using Linked list CO1,
CO3

22. Program to implement Tower of Hanoi CO2
23. Program implementing Addition of two polynomials via Linked Lists CO1
24. Program to implement binary tree using linked list
a. Insertion b. Deletion c. Traversal d. Searching

CO1,
CO5

25. Program to implement binary search tree using linked list CO1,

a. Insertion b. Deletion c. Traversal d. Searching

CO5
26. Program to implement heap sort in a non-recursive way CO1,

CO4
27. Program to implement BFS algorithm CO5
28. Program to implement DFS algorithm CO5
29. Program to implement the minimum cost spanning tree CO5
30. Program to implement the shortest path algorithm CO5

Lab Course Outcome: At the end of course, the student will be able to

CO1 Write programs for solving mathematical problems using array and
linked list.

K3

CO2 Implement concept of recursion to solve complex problem. K3
CO3 Implement various operations of stack and queue data structure. K3
CO4 Write efficient sorting, searching programs. K3
CO5 Implement program to solve real world problem using tree and graph

data structure.
K3

