

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme & SyllabusFor

Bachelor of Technology Computer Science & Engineering

Second Year

(Effective from the Session: 2024-25)

Bachelor of Technology Computer Science & Engineering

Evaluation Scheme

SEMESTER-III

Sl.	Subject	Subject	Types of	Peri	iods		Evaluation Schemes				En Seme		Total	Credit
No.	Codes	J.	Subjects	L	T	P	CT	TA	TOTAL	PS	TE	PE		
	ı	3 WEEL	KS COMPULSO	ORY I	INDU	CTIC	N PRO	GRAN	/ I			1		
1	1 BAS0301A Engineering Mathematics-III Mandatory 3 1 0 30 20 50 100 150 4													
2	BCSE0306	Discrete Structures	Mandatory	3	1	0	30	20	50		100		150	4
3	BCSE0304	Digital Logic and IoT Systems	Mandatory	3	0	0	30	20	50		100		150	3
4	BCSE0301	Data Structures and Algorithms – I	Mandatory	3	0	0	30	20	50		100		150	3
5	BCSE0305	Computer Organization and Architecture	Mandatory	3	0	0	30	20	50		100		150	3
6	BCSE0352	Object Oriented Techniques using Java	Mandatory	0	0	6				50		100	150	3
7	BCSE0351	Data Structures and Algorithms - I Lab	Mandatory	0	0	4				50		50	100	2
8	BCSE0354	Digital Logic and IoT Systems Lab	Mandatory	0	0	2				25		25	50	1
9	BCSE0359	Internship Assessment -I	Mandatory	0	0	2				50			50	1
10	BNC0301/ BNC0302	Artificial Intelligence & Cyber Ethics/ Environmental Science	Compulsory Audit	2	0	0	30	20	50		50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
		TOTAL											1100	24

* List of MOOCs Based Recommended Courses for Second year (Semester-III) B. Tech Students

Sr. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	BMC0012	Data Structures and Algorithms using Python - Part 1	Infosys Wingspan (Infosys Springboard)	29h 27m	2
2	BMC0008	Object Oriented Programming Using Python	Infosys Wingspan (Infosys Springboard)	46h 13m	3.5

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-II and will be assessed during semester-III
- Compulsory Audit (CA) Courses (Non-Credit BNC0301/BNC0302)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - The total and obtained marks are not added in the grand total.

Abbreviation Used:

Bachelor of Technology Computer Science & Engineering

Evaluation Scheme SEMESTER-IV

Sl.	Subject	Subject	Types of	P	eriod	ls	E	valuati	on Scheme	es	End Semester		Total	Credit
No.	Codes	Ü	Subjects	L	T	P	CT	TA	TOTAL	PS	TE	PE		
1	BAS0402	Engineering Mathematics-IV	Mandatory	3	1	0	30	20	50		100		150	4
2	BASL0401	Technical Communication	Mandatory	2	1	0	30	20	50		50		100	3
3	BCSE0404	Theory of Automata and Formal Languages	Mandatory	3	0	0	30	20	50		100		150	3
4	BCSE0401	Data Structures and Algorithms - II	Mandatory	3	0	0	30	20	50		100		150	3
5	BCSE0403A	Operating Systems	Mandatory	2	0	0	30	20	50		50		100	2
6	BCSE0452	Database Management Systems	Mandatory	0	0	6				50		100	150	3
7	BCSE0451	Data Structures and Algorithms – II Lab	Mandatory	0	0	4				50		50	100	2
8	BCSE0453A	Operating Systems Lab	Mandatory	0	0	4				50		50	100	2
9	BASL0451	Technical Communication Lab	Mandatory	0	0	2				25		25	50	1
10	BCSE0459	Mini Project	Mandatory	0	0	2				50			50	1
11	BNC0402/ BNC0401	Environmental Science/ Artificial Intelligence & Cyber Ethics	Compulsory Audit	2	0	0	30	20	50		50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
		TOTAL											1100	24

* List of MOOCs Based Recommended Courses for Second year (Semester-IV) B. Tech Students

. No.	. Subject Code Course Name		University / Industry Partner Name	No of Hours	Credits
1	BMC0018	Data Structures and Algorithms using Python - Part 2	Infosys Wingspan (Infosys Springboard)	37 h 41 m	3
2	BMC0019	Data Structures and Algorithms using Java	Infosys Wingspan (Infosys Springboard)	49 h 52 m	4

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-IV and will be assessed during Semester-V
- Compulsory Audit (CA) Courses (Non-Credit BNC0401/BNC0402)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - > The Total and obtained marks are not added in the Grand Total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE: Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

- 1. For 6 to 12 Hours = 0.5 Credit
- 2. For 13 to 18 = 1 Credit
- 3. For 19 to 24 = 1.5 Credit
- 4. For 25 to 30 = 2 Credit
- 5. For 31 to 35 = 2.5 Credit
- 6. For 36 to 41 = 3 Credit
- 7. For 42 to 47 = 3.5 Credit
- 8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

- i. If he / she secures 7.50 as above CGPA.
- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Engineering Mathematics-III	L-T-P [3-1-0]
---	---------------

Subject Code: BAS0301A Applicable in Department: All Branches

Pre-requisites of the Subject: Knowledge of Mathematics I and II of B. Tech or equivalent

Course Objective-The objective of this course is to familiarize the engineers with concept of function of complex variables, Partial differential equations & their applications, Numerical techniques for various mathematical tasks and numerical aptitude. It aims to show case the students with standard concepts and tools from B. Tech to deal with advanced level of mathematics and applications that would be essential for their disciplines.

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's
		Knowledge
		Level(KL)
	Apply the concept of partial differential equation to solve partial differential eequations and problems concerned with partial	К3
CO 1	differential equations.	
	Apply the concept of numerical techniques to evaluate the zeroes of the Equation, concept of interpolation and numerical	К3
CO2	methods for various mathematical operations and tasks, such as integration, the solution of linear system of equations.	
CO3	Apply the working methods of complex functions for finding analytic functions.	К3
CO4	Apply the concepts of complex functions for finding Taylor's series, Laurent's series and evaluation of definite integrals.	К3

Syllabus

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
Differen tial Equatio n and its	Differential Equation and	equations, Solution of one dimension wave and heat equation.		8	Assignment 1.1	CO1
cal	Module 2.1: Numerical Techniques	Error analysis, Zeroes of transcendental and polynomial equations using Bisection method, Regula-Falsi method and Newton-Raphson method, Interpolation: Lagrange's and Newton's divided difference formula. Solution of system of linear equations, Gauss Elimination method, Gauss- Seidel method. Numerical integration, Trapezoidal rule, Simpson's one third and three-eight rules.	Class room Teaching, Smart Board, PPT,	8	Assignment-2.1	CO2
3 Comple x	Module 3.1: Complex	Limit, Continuity and differentiability, Functions of complex variable, Analytic functions, Cauchy- Riemann equations (Cartesian and Polar form), Harmonic function, Method to find Analytic functions, Mobius transformation and their properties.	Class room	8	Assignment-3.1	CO3
4 Comple x Variable Integrat	Module 4.1:	Complex integrals, Contour integrals, Cauchy- Goursat theorem (Statement), Cauchy integral formula (Statement), Taylor's series, Laurent's series, Liouvilles's theorem (Statement), Singularities, Classification of Singularities, zeros of analytic functions, Residues, Methods of finding residues, Cauchy Residue theorem, Evaluation	Teaching, Smart Board, PPT,	8	Assignment-4.1	CO4

ion	Complex	of real integrals of the type $\int_0^{2\pi} f(\sin \theta, \cos \theta) d\theta$ and $\int_{-\infty}^{\infty} f(x) dx$				
	Variable –					
	Integration					
	Module 5.1:	Number System, Permutation & Combination, Probability, Set	Class room			
5		theory, Function, Non Verbal Reasoning, Data Interpretation,	Teaching,			
Aptitud	Aptitude-III	Syllogism.	Smart	8	Assignment-5.1	CO5
e			Board, PPT,			
			M- tutor.			
		Total		40		

	Textbooks
Sr No	Book Details
1.	B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Ltd., 2008.
2.	B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher, 2005.
3.	R K. Jain & S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House 2002.
4.	E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons, 2005.
	Reference Books
Sr No	Book Details
1.	Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning, 2007.

2.	Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.
	Links
Unit 1	https://archive.nptel.ac.in/courses/111/101/111101153/
Unit 2	https://archive.nptel.ac.in/courses/111/107/111107105/
Unit 3	https://archive.nptel.ac.in/courses/111/107/111107056/
Unit 4	https://archive.nptel.ac.in/courses/111/103/111103070/
Unit 5	https://nptel.ac.in/courses/111107058
	https://archive.nptel.ac.in/courses/127/106/127106227/ https://archive.nptel.ac.in/courses/111/102/111102111/

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Discrete Structures L-T-P [3-1-0]

Subject Code: BCSE0306 Applicable in Department: All Branches

Pre-requisite of Subject: Some basic knowledge of algebra and logic is usually sufficient to begin studying discrete mathematics for computer science. Familiarity with sets, functions, and basic Boolean algebra is also helpful.

Course Objective: The objective of discrete structure is to enable students to formulate problems precisely, solve the problems, apply formal proofs techniques and hence enhance one's logical thinking and problem-solving skills.

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Apply the basic principles of sets, relations & functions and mathematical induction in computer science & engineering related problems.	КЗ
CO2	Describe the algebraic structures and it's properties to solve complex problems.	K2
CO3	Describe lattices and it's type to simplify digital circuits.	K2
CO4	Infer the validity of statements and construct proofs using predicate logic formulas.	К4
CO5	Implement and use non-linear data structure like graphs to solve real world problems.	К3

Syllabus

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignme nt/ Lab Nos	CO Mapping
1 Set Theory	Module 1.1: Set Theory	Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality, Venn Diagrams, proofs of some general identities on sets, Applications of set Theory		8 Hours theory	NA	CO1
	Module 1.2: Relations	, ,, , , , , , , , , , , , , , , , , , ,	Lecture Notes, PPT, Online Videos & R2			COI
Algebraic		Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, Properties of groups, Subgroup, cyclic group, Permutation group, Cosets, Normal subgroup, Homomorphism and isomorphism of Groups, Applications of Algebraic Structure	Notes, PPT,	8 Hours theory	NA	CO2
Posets, Hasse	Module 3.1: Posets, Hasse Diagram and Lattices:	Introduction, ordered set, Hasse diagrams of partially ordered set, isomorphic ordered set, well ordered set, properties of lattices, types of lattices, Applications of Lattice		8 Hours theory	NA	CO3
4 Propositio nal &	Propositional Logic		Lecture Notes, PPT, Online Videos & R1	8 Hours theory	NA	604
Predicate Logic	Module 4.2: Predicate Logic	Quantifiers, Inference Theory of Predicate Logic, Application of	Lecture Notes, PPT, Online Videos & R2			CO4
	Module 5.1: Graphs	connectivity, Walks, Paths, Cycles, Bipartite, Regular, Planar and connected graphs, Components, Euler graphs, Euler's theorem.	Lecture Notes, PPT, Online Videos & R2	8 Hours Theory	NA	CO5

isomorphism and homomorphism of graphs, Application of Graphs		
Total	40 Hours	

	Textbooks							
Sr. No.	Book Details							
1.	Swapan Kumar Sarkar, "A Textbook of Discrete Mathematics", S. Chand Publication, 9 th Edition, 2021							
2.	T Veerarajan, "Discrete Mathematics, with Graph Theroy and Combinatorics" TMH Publication, 4 th Edition, 2021							
	Reference Books							
Sr. No.	Book Details							
1.	B. Kolman, R.C. Busby, and S.C. Ross, Discrete Mathematical Structures, Prentice Hall, 6th Edition, 2020.							
2.	Liptschutz, Seymour, "Discrete Mathematics", TMH, 4th Edition, 2021.							
3.	Kenneth H. Rosen, Kamala Krithivasan, "Discrete Mathematics and its Applications", TMH, 8th Edition, 2021							
	Links							
Unit 1	https://www.youtube.com/watch?v=hGtOLG3Ssjl&list=PLwdnzlV3ogoVxVxCTlI45pDVM1aoYoMHf&index=9							
	https://www.youtube.com/watch?v=rGcTcGFx9_s&list=PLwdnzlV3ogoVxVxCTlI45pDVM1aoYoMHf&index=10							

	https://www.youtube.com/watch?v=_BIKq9Xo_5A&list=PL0862D1A947252D20&index=13
Unit 2	https://www.youtube.com/watch?v=dQ4wU0k7JKI&list=PL0862D1A947252D20&index=35
	https://www.youtube.com/watch?v=CjmWE-f3vEc&list=PLwdnzIV3ogoVxVxCTlI45pDVM1aoYoMHf&index=41
Unit 3	https://www.youtube.com/watch?v=qPtGlrb_sXg&list=PL0862D1A947252D20&index=40
Unit 4	https://www.youtube.com/watch?v=xIUFkMKSB3Y&list=PL0862D1A947252D20&index=1
	https://www.youtube.com/watch?v=DmCltf8ypks&list=PL0862D1A947252D20&index=3
Unit 5	https://www.youtube.com/watch?v=E40r8DWgG40&list=PLEAYkSg4uSQ2fXcfrTGZdPuTmv98bnFY5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Digital Logic and IoT Systems L-T-P [3-0-0]

Subject Code: BCSE0304 Applicable in Department: CSE/IT

Pre-requisite of Subject: Fundamental knowledge of Basic Electronics & Characteristics of Semiconductors.

Course Objective: The objective of the course is to equip students with the necessary theoretical knowledge, practical skills, and critical thinking abilities to understand, design, and implement digital logic circuits and IoT systems effectively.

Course Outcomes (CO)

	Knowledge Level(KL)
Understand the fundamentals of digital logic design, including Boolean algebra, logic gates, and truth tables.	K2
Analyze and Design combinational logic circuits using basic logic gates, multiplexers, and decoders	К4
Analyze and Design sequential logic circuits using flip-flops, registers, and counters	K4
Understand the fundamental concepts, principles, and architecture of the Internet of Things (IoT).	K2
Analyze IoT devices and systems with microcontrollers, sensors, and connectivity modules.	К4
	Analyze and Design combinational logic circuits using basic logic gates, multiplexers, and decoders Analyze and Design sequential logic circuits using flip-flops, registers, and counters Understand the fundamental concepts, principles, and architecture of the Internet of Things (IoT).

Syllabus

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
	Module1.1: Computer Arithmetic	Number System and its arithmetic, signed binary numbers, compliments, Binary codes, Cyclic codes, , Hamming Code				
1 Introduction of Digital System and Binary Numbers	Module1.2: Simplification of Boolean expression	Simplification of Boolean Expression: K-map method up to five variables, SOP and POS Simplification Don't Care Conditions	PPTs/ Lecture Notes /Smart Board		Concepts of digital ICs, specifications	CO1
	Module1.3: Logic Gates	NAND and NOR Gate Application (washing machines, dishwashers, or refrigerators)				
2 Introduction of Combinational	Module 2.1: Combinational Circuits Analysis Module 2.2:	Analysis Procedure, Design Procedure Code Converter, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders,	PPTs/ Lecture Notes /Smart	8 T+4P	By using logic gates combinational circuit is verified.	CO2
logic Circuit	Combinational Circuits Example	Encoders, Multiplexers, Demultiplexers Application (telecommunication, Automation))	Board		circuit is verified.	
3 Introduction of Sequential Circuit	(Flip-Flop & Latches) Module 3.2:	Latches & Flip Flops, Characteristic Equations of Flip Flops, Excitation Table of Flip Flops, Flip Flop Conversion	PPTs/ Lecture Notes /Smart	8T+4P	Flip flop verification using universal gate, synchronous counter	C03
	sequential Circuit (Register and Counter)	Registers, Shift Registers, Synchronous and Asynchronous Counters, Other Counters: Johnson & Ring Counter Application (microcontrollers, microwave oven.)	Board		verification	
4 Introduction of IoT	Module 4.1: Fundamental of IoT	Microcontroller for IoT; application, working and types, Characteristics of IoT, Components of the IoT, Conceptual & Architectural Framework of IoT, Overview of IoT programming Boards such as Arduino UNO,	PPTs/ Lecture Notes /Smart Board	8T + 6P	Architecture of Arduino UNO, Node MCU Board, Various types of Sensors	C04

	Module 4.2: IOT program Board	NANO, Node MCU. Application (web servers, and surveillance.)				
5 Arduino platform boards anatomy	Module 5.1: Fundamental of Sensor in IOT Module 5.2: Interfacing of Sensor in the Arduino	Introduction to Sensors & different types of Sensors, Transducer, Actuators, Radio Frequency Identification (RFID) Technology. Interfacing of Sensor using Arduino board with LED, Push Button, LCD, Ultrasonic Sensor, Humidity Sensor and LDR Sensor Application (solar panels, Smart Door)	PPTs/ Lecture Notes /Smart Board	8T + 6P	Interfacing Arduino with I/O Devices, Connecting NODE MCU with Internet	CO5
Total				40T + 24P		

	Textbooks						
Sr. No.	Book Details						
1.	Michael Miller, "The Internet of Things" Pearson, 1st Edition March 2015						
2.	A. Anand Kumar, "Fundamentals of Digital Circuits", PHI Learning Pvt. Ltd, 4th edition, 2016.						
3.	Arshdeep Bahga and Vijay Madisetti, "Internet of Things: A Hands-On Approach", Orient Blackswan Private Limited, 1st New Delhi, 2015.						
	Reference Books						
Sr. No.	Book Details						
1.	D.P. Kothari, J.S. Dhillon, "Digital Circuits & Design", Pearson Education India, 1st Edition, 2015.						
2.	Michael Miller, "The Internet of Things", Pearson Education, 1st Edition, 2015.						

3.	M. Morris R. Mano and Michael D. Ciletti, "Digital Design", Pearson Education, Global Edition, 2018						
	Links						
Unit 1	https://www.youtube.com/playlist?list=PLbRMhDVUMngfV8C6ElNAUaQQz06wEhFM5						
Unit 2	https://www.youtube.com/playlist?list=PL803563859BF7ED8C						
Unit 3	https://www.youtube.com/playlist?list=PLbRMhDVUMnge4gDT0vBWjCb3Lz0HnYKkX						
Unit 4	https://www.youtube.com/channel/UC6ZY_csXZc7YZZm2W8HcQ6A/video						
Unit 5	https://www.youtube.com/channel/UC6ZY_csXZc7YZZm2W8HcQ6A/video						

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)
School of Computer Science & Information Technology

Subjec	ubject Name: Data Structures and Algorithms-I L-T-P [3-0-0]							
Subjec	t Code: BCS	E0301	Applicable i	in Departm	ent: CSE/	IT/CS/AI/AIML,	/IOT/ DS/CYS	
Pre-re	quisite of Su	bject: C, Python						
Course structui	-	The objective of the course is to learr	n the basic concepts of algorith	m analysis, al	ong with im	plementation of I	inear data	
Course	Outcomes	(CO)						
Course	e outcome: /	After completion of this course s	tudents will be able to:				Bloom's Knowledge Level(KL)	
CO 1	Understand t	the concept of algorithm analysis and	its importance for problem sol	ving.			K2	
CO2	Implementat	ion of Arrays for searching, sorting ar	nd hashing to foster critical thin	king.			К3	
CO3	Compare and	contrast linked list with arrays and in	mplementation of linked list wi	th its applicat	tions.		K4	
CO4	Understand s	static and dynamic implementation of	f stacks, while mastering princip	ole of recursion	on for effec	tive problem-	К3	
CO5	Implementation and analysis of divide & conquer algorithms and greedy approach for efficient problem-solving across diverse contexts.							
			Syllabus					
Unit No	Module Name	Topic covered		Pedagogy	Lecture Required	Practical/ Assignment/	CO Mapping	

				(L+P)	Lab Nos	
Introdu ction to	Foundation of Algorithms Analysis and Design	Recurrences, Performance Measurements Time and Space Complexity of an algorithm, Asymptotic	Lectures, Problem Solving, Collaborativ e Learning, Assessments	8T+6P	Program to compare the time complexities of various algorithms by plotting the graph	CO1
		Data types: Primitive and non-primitive, Introduction to Data structure, Types of Data Structures- Linear & Non-Linear Data Structures.				
Design and Analysis	Arrays	Order, Derivation of Index Formulae for 1-D,2-D,3-D and n-D Array	Lectures, Code Walkthroug hs, Hand-on Programmin		Implementation of Arrays, Row Major Order, and Column Major Order, Representation of sparse matrix, Linear search, Binary search.	CO2
Algorith ms: Arrays, searchi	Searching and	Sorting algorithm with analysis: Bubble sort, Insertion sort, Selection sort, Shell Sort, Sorting in Linear Time- Counting Sort.	g Problem	8T+12P		
ISOLUME.		Hashing: The symbol table, Hashing Functions, Collision-	coding, Assessments			

Module 5.1: Divide and Conquer concepts with Examples Such as Conquer and Conquer and Greedy Methods with Examples Such as Activity Selection Scheduling, Fractional Knapsack Problem. Methods of gorith ms: vivide and conque and conquer concepts with Examples Such as Activity Selection Scheduling, Fractional Knapsack Problem. Methods of gorith ms: vivide and conquer concepts with Examples Such as Activity Selection Scheduling, Fractional Knapsack Problem.	Code conquer methods
--	----------------------

	Textbooks					
Sr. No.	Book Details					
1.	Michael T. Goodrich, Roberto Tamassia, "Data Structures and Algorithms in Python: An Indian Adaptation", 1st Edition, 2021.					
2.	Horowitz and Sahani, "Fundamentals of Data Structures", Computer Science Press, 1st Edition, 1993.					
3.	Lipschutz, "Data Structures" Schaum's Outline Series, Tata McGraw-hill Education (India) Pvt. Ltd, 2nd Edition, 2017					
	Reference Books					

Sr. No.	Book Details
1.	Reema Thareja, "Data Structure Using C", Oxford University Press, 2 nd Edition, 2014.
2.	AK Sharma, "Data Structure Using C", Pearson Education India, 2 nd Edition,2011.
3.	P. S. Deshpandey, "C and Data structure", Wiley Dreamtech Publication, 1 st Edition, 2004.
	Links
Unit 1	https://youtu.be/u5AXxR4GnRY
Unit 2	https://www.youtube.com/watch?v=LQx9E2p5c&pp=ygUMYXJyYXlzIG5wdGVs
Unit 3	https://www.youtube.com/watch?v=K7VIKlUdo20&pp=ygUPbGluayBsaXN0IG5wdGVs
Unit 4	https://www.youtube.com/watch?v=g1USSZVWDsY&list=PLB3CD0BBB95C1BF09&index=2&pp=iAQB
	https://www.youtube.com/watch?v=THMyk2_p530&pp=ygUccXVldWUgZGF0YSBzdHJ1Y3R1cmUgICBucHRlbA%3D%3D
Unit 5	https://www.youtube.com/watch?v=_VV9v41FIq0&pp=ygUZZGI2aWRIIGFuZCBjb25xdWVyICBucHRlbA%3D%3D
Offic 5	https://www.youtube.com/watch?v=ARvQcqJNY&list=PLfFeAJ-vQopt_S5XlayyvDFL_mi2pGJE3

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Computer Organization and Architecture					
Subject Code: BCSE0305 Applicable in Departme					
Pre-red	quisites of the Subject: Computer Fundamentals				
	e Objective- To understand the types of organizations, structures and functions of computer, design of arithmetic and lo ithmetic. To understand the concepts of memory system, communication with I/O devices and interfaces.	ogic unit and float			
	Course Outcomes (CO)				
Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)			
CO1	Understand the basic structure and operation of a digital computer system.	К2			
CO2	Analyze the design of arithmetic & logic unit and understand the fixed point and floating-point arithmetic operations.	K4			
CO3	Implement control unit techniques and the concept of Pipelining	К3			
CO4	Evaluate the hierarchical memory system, cache memories and virtual memory.	K5			
CO5	Understand different ways of communicating with I/O devices and standard I/O interfaces.	К2			

	Syllabus						
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping	
1 Introduc tion	Introduction	Computer Organization and Architecture, Functional units of digital system and their interconnections, buses, bus architecture, types of buses and bus arbitration and its types. Register, bus and memory transfer. Processor organization, general registers organization, stack organization and addressing modes.	Notes, PPT, Online Videos & R2	8 Hours theory	Assignment on CPU organization, bus architecture, addressing modes	CO1	
2 ALU Unit	ALU Unit	Arithmetic and logic unit: Lookahead carry-adder. Multiplication: Signed operand multiplication, Booth's algorithm and array multiplier. Division and logic operations. Floating point arithmetic operation, Arithmetic &logic unit design. IEEE Standard for Floating Point Numbers.	Notes, PPT,	8 Hours theory	Assignment on floating point number representation, Booth algorithm	CO2	
3 Control unit	Control Unit	Control Unit: Instruction types, formats, instruction cycles and sub cycles (fetch and execute etc.), micro-operations, execution of a complete instruction. Program Control, Reduced Instruction Set Computer, Complex Instruction Set Computer, Pipelining. Hardwire and microprogrammed control, Concept of horizontal and vertical microprogramming, Flynn's classification.	Notes, PPT, Online Videos & R2	8 Hours theory	Assignment on instruction cycle, instruction format, types of control unit	CO3	
4 Memor y Unit	Memory Unit	Memory: Basic concept and hierarchy, semiconductor RAM memories, 2D & 2 1/2D memory organization. ROM memories. Cache memories: concept and design issues & performance, address mapping and replacement Auxiliary memories: magnetic disk, magnetic tape and optical disks Virtual memory: concept implementation, Memory Latency, Memory Bandwidth, Memory Seek Time.	Notes, PPT, Online Videos & R1	8 Hours theory	Assignment on memory mapping and replacement policies	CO4	
5 Input/ Output	Input/Output	Peripheral devices, I/O interface, I/O ports, Interrupts: interrupt hardware, types of interrupts and exceptions. Modes of Data Transfer: Programmed I/O, interrupt initiated I/O and Direct Memory Access, I/O channels and processors. Serial Communication: Synchronous & asynchronous communication.	Notes, PPT,	8 Hours theory	Assignment on modes of data transfer	CO5	

Гotal	40	

	Textbooks					
Sr No	Book Details					
1	M. Mano, "Computer System Architecture", 3rd Edition, Pearson Publication, 2007.					
2	John P. Hayes, Computer Architecture and Organization, Tata McGraw Hill, Third Edition, 1998.					
3	William Stallings, Computer Organization and Architecture-Designing for Performance, Pearson Education, Seventhedition, 2006.					
	Reference Books					
Sr No	Book Details					
1	Carl Hamacher, Zvonko Vranesic, Safwat Zaky Computer Organization, McGraw-Hill, Fifth Edition, Reprint2012					
2	Ray A K, Bhurchandi K M, "Advanced Microprocessors and Peripherals", TM.					
	Links					
Unit 1	https://www.youtube.com/watch?v=L9X7XXfHYdU&list=PLxCzCOWd7aiHMonh3G6QNKq53C6oNXGrX					
Unit 2	https://www.youtube.com/watch?v=WLgXUPOjKEc					
Unit 3	https://www.youtube.com/watch?v=BPhWlFIU1rc					

Unit 4	https://www.youtube.com/watch?v=6R7JDkpG1Wk&list=PLrjkTql3jnm8HbdMwBYIMAd3UdstWChFH
Unit 5	https://www.youtube.com/watch?v=nxryfWg5Hm4

CO4

CO5

world problem.

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute) **School of Computer Science & Information Technology**

К6

Subjec	t Name: Object Oriented Techniques using Java L-T-F	P [0-0-6]	
Subjec	t Code: BCSE0352 Applicable in Department: CSE/IT/AI/AIML/DS/	CYS/CS	
Pre-red	quisites of the Subject: 1. Student must know at least the basics of computer skills, and should be able to start a command	d line shell.	
2. Know	ledge of basic programming concepts.		
	Objective- The objective of this course is to understand the object-oriented methodology, and its techniques to design st lications using hands-on engaging activities.	and alone an	
	Course Outcomes (CO)		
Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)	
CO 1	Understand the concepts of object-oriented programming and relationships among them needed in modeling.	K2	
CO2	Demonstrate the Java programs using OOP principles and also implement the concepts of lambda expressions.	К3	
CO3	Analyze packages with different protection level resolving namespace collision and implement the error handling concepts for uninterrupted execution of Java program.	К4	
CO4	Implement Concurrency control, I/O Streams and Annotations concepts by using Java program.	К3	

Design and develop the GUI based application, Generics and Collections in Java programming language to solve the real-

		Syllabus				
Unit No.	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
		Introduction and Pillars of OOP with real life example, jvm architecture and its components	T1, R1, Smart Board/PPT/ Online	3 (1+2)	Setting class path variables, Compilation of java file and execute its byte code.	
Basics of Java	Module 1.2: Modelling Concepts	Generalization.		3(1+2)	Designing object and class diagram with UML concepts.	CO 1
mming		Decision Making, Looping and Branching, Argument Passing Mechanism: Command Line Argument, Console Input.		Programs	4(1+3)	Implementation of java programs on control statements.
		Object Reference, Constructor, Abstraction: Abstract Class, Interface and its uses, Defining Methods, Use of "this" and "super" keyword, Garbage Collection and finalize () Method etc.		8 (2+6)	Implementation of Java Basics, Class, Object, abstract class interface, garbage collection.	
OOPs features , arrays and	Inheritance	eonstructors and super constructor in innernance.	T1, R1, Smart Board/PPT/ Online Programs	4 (1+3)	Implementation of inheritance concept.	CO2
	Dolumorphic	Introduction and Types of Polymorphism, Overloading and Overriding	i rograms	4 (1+3)	Implementation of polymorphism concept.	

	Module 2.3: Lambda expression	Introduction and Working with Lambda Variables.		2(1+1)	Programs based on Lambda expression.	
	Module 2.4: Arrays	Introduction to Arrays and its Types.		4(1+3)	Programs based on array concept.	
	Module 3.1: Packages	Introduction to Packages and its Types, Access Protection in Packages, Import and Execution of Packages.	T1, R1, Smart Board/PPT/ Online	3 (1+2)	Implementation of java package, Exception	
Package s, Excepti on Handlin g and	Exception Handling, Assertions and Localizations	Exceptions vs. Errors, Handling of Exception. Finally, Throws and Throw keyword, Multiple Catch Block, Nested Try and Finally Block, Tokenizer. Assertions and Localizations Concepts and its working.		5 (2+3)	-handling, Assertion, Localization and String handling	CO3
g	Module 3.3: String Handling	String Types, Operations, Immutable String, Method of String class, String Buffer and String Builder class.		5 (2+3)		
ency in	Module 4.1: Threads Module 4.2: I/O Stream Module 4.3: Annotations	Overview of Threads, Creating Threads, Thread Life-Cycle, Thread Priorities, Daemon Thread, Runnable Class, Synchronizing Threads etc. Common I/O Stream Operations, Interaction with I/O Streams Classes. Introduction, Custom Annotations and Applying Annotations.	Smart Board/PPT/	4(2+2) 3(1+2) 3(1+2)	Implementation of Multi-threading, Annotation, Character and Byte Stream classes java.io package.	CO4
5 GUI	Module 5.1: GUI Programming	Swing, AWT, Components and Containers, Layout Managers and User-Defined Layout and Event Handling.	T2, R2, R3 Smart Board/PPT/	4(2+2)	Implementation of AWT & Swing	CO5

mming, Generic	Generics Module 5.3: Collections	Introduction to Generic Classes, Initializing a Generic Object, Generic Cell Driver Class, Generic Methods, Use enumerated type. Introduction to Collections, Using Method References, Using Wrapper Class, Using Lists, Sets, Maps and Queues, Collection using Generics, Iterators	Programs	6(2+4)	components, Layout Manager classes, Generic & Collection, and Wrapper classes	
		Total		70 (23T+47P)		

List of Practicals		
Sr. No.	Program Title	
31.140.	Trogram ride	Mapping
1	Understanding Text Editors to Write Programs, Compile and run first java file and Byte Code and class file	CO1
2	Sketch a class and object diagram by describing the sales order system of a restaurant.	CO1
3	Sketch a class diagram by describing the circle and rectangle class.	CO1
4	Sketch a class diagram for a college platform including, classroom, playground, chair, table, smart board, teaching staff etc.	CO1
5	Sketch a class diagram containing class called Employee, which models an employee with an ID, name and salary. Add method raisesalary(percent) that increases the salary by the given percentage.	CO1
6	Program to display the default value of all Primitive data types	CO1
7	Implement the code using main() method to calculate and print the Total and Average Marks scored by a student from the input given through the command line arguments and assume that four command line arguments name , marks1 , marks2 , marks3 will be passed to the main() method in the below class with name TotalAndAvgMarks .	CO1
8	Write code which uses if-then-else statement to check if a given account balance is greater or lesser than the minimum balance. Write a class BalanceCheck with public method checkBalance that takes one parameter balance of type double. Use if-then-else statement and print Balance is low if balance is less than 1000. Otherwise, print Sufficient balance.	CO1

_	A class NumberPalindrome with a public method isNumberPalindrome that takes one parameter number of type int. Write a code to check whether the given number is palindrome or not.	CO1
9	·	
	For example Cmd Args: 333	
	333 is a palindrome	604
10	Write a class FibonacciSeries with a main method. The method receives one command line argument. Write a	CO1
	program to display fibonacci series i.e. 0 1 1 2 3 5 8 13 21	
11	Write a Java Program to find the Factorial of a given number.	CO1
12	Java Program to create a class, methods and invoke them inside main method.	CO1
	Write a Java program to illustrate the abstract class concept. Create an abstract class Shape, which contains an empty method numberofSides().	CO1
13	 Define three classes named Trapezoid, Triangle and Hexagon extends the class Shape, such that each one of the classes contains only the method numberofSides(), that contains the number of sides in the given geometrical figure. 	
	 Write a class AbstractExample with the main() method, declare an object to the class Shape, create instances of each class and call numberofSides() methods of each class. 	
14	Java program to illustrate the static field in the class.	CO1
15	Java Program to illustrate static class.	CO1
16	Write a java program to access the class members using super keyword	CO1
17	Java program to access the class members using this keyword	CO1
18	Implement an interface named MountainParts that has a constant named TERRAIN that will store the String value "off_road". The interface will define two methods that accept a String argument name newValue and two that will return the current value of an instance field. The methods are to be named: getSuspension, setSuspension, getType, setType.	CO1
19	Java program to demonstrate nested interface inside a interface.	CO1
20	Java program to demonstrate nested interface inside a class.	CO1
21	Java program to explicit implementation of garbage collection by using finalize() method	CO1
22	JAVA program to implement Single Inheritance	CO2
23	JAVA program to implement multi-level Inheritance	CO2

24	JAVA program to implement constructor and constructor overloading.	CO2
25	JAVA program implement method overloading.	CO2
26	JAVA program to implement method overriding.	CO2
27	Java program to implement lambda expression without parameter.	CO2
28	Java program to implement lambda expression with single parameter.	CO2
29	Java program to implement lambda expression with multi parameter.	CO2
30	Java program to implement lambda expression that iterate list of objects	CO2
31	Java program to define lambda expressions as method parameters	CO2
32	Write a class CountofTwoNumbers with a public method compareCountof that takes three parameters one is arr of type int[] and other two are arg1 and arg2 are of type int and returns true if count of arg1 is greater than arg2 in arr. The return type of compareCountof should be boolean. Assummptions: • arr is never null • arg1 and arg2 may be same	CO2
33	JAVA program to show the multiplication of two matrices using arrays.	CO2
34	Java Program to search an element using Linear Search	CO2
35	Java program to search an element using Binary Search	CO2
36	Java Program to sort element using Insertion Sort	CO2
37	Java Program to sort element using Selection Sort – Largest element Method	CO2
38	java program to Sort elements using Bubble Sort	CO2
39	Java program to create user defined package.	CO3
40	Java Program to create a sub- classing of package	CO3

	Implement the following:	CO3
41	Import package.*;	
	import package.classname;	
	Using fully qualified name.	
42	Implement and demonstrate package names collision in java	CO3
43	Java program to handle and Arithmetic Exception Divided by zero	CO3
14	Java Program to implement User Defined Exception in Java	CO3
45	Java program to illustrate finally block	CO3
46	Java program to illustrate Multiple catch blocks	CO3
47	Java program for creation of illustrating throw in exception handling.	CO3
48	Implement the concept of Assertion in Java Programming Language	CO3
49	Implement the concept of Localization in Java Programming Language.	CO3
50	Java program to print the output by appending all the capital letters in the input string.	CO3
51	Java program that prints the duplicate characters from the string with its count.	CO3
52	Java program to check if two strings are anagrams of each other	CO3
53	Java Program to count the total number of characters in a string	CO3
54	Java Program to count the total number of punctuation characters exists in a String	CO3
55	Java Program to count the total number of vowels and consonants in a string	CO3
56	Java Program to show .equals method and == in java	CO3
57	Given a string, return a new string made of n copies of the first 2 chars of the original string where n is the length of the string. The string may be any length. If there are fewer than 2 chars, use whatever is there. If input is "Wipped" then output should be "WiWiWiWiWi".	СОЗ
58	Given two strings, a and b, create a bigger string made of the first char of a, the first char of b, the second char of a, the second char of b, and so on. Any leftover chars go at the end of the result. If the inputs are "Hello" and "World", then the output is "HWeoIrllod".	CO3

59	JAVA program to show the usage of string builder.	CO3
60	JAVA program to show the usage of string buffer.	CO3
61	Creating and Running a Thread	CO4
62	Implementing Runnable Interface	CO4
63	Synchronizing Threads with lock	CO4
64	Synchronizing Threads without lock	CO4
65	JAVA program to implement even and odd threads by using Thread class .	CO4
66	JAVA program to implement even and odd threads by using Runnable interface.	CO4
67	JAVA program to synchronize the threads by using Synchronize statements and Synchronize block.	CO4
68	Demonstrate the concept of type annotations in the JAVA programming language.	CO4
69	Demonstrate the concept of user-defined annotations in the JAVA programming language.	CO4
70	JAVA program to implement that read a character stream from input file and print it into output file.	CO4
71	JAVA program to implement that merge the content of two files (file1.txt, file2.txt) into file3.txt.	CO4
72	Write a Java program that reads the contents of one file and copies them to another file.	CO4
73	Write a Java program that reads a text file and counts the number of words in it.	CO4
74	Write a Java program that reads a text file and counts the frequency of each word in it.	CO4
75	Write a Java program that reads a text file and adds line numbers to each line. The program should create a new file with the line numbers added to the beginning of each line.	CO4
76	Write a Java program that reads two binary files and compares them byte by byte to determine if they are identical. Display a message indicating whether the files are the same or different.	CO4
77	Program to create a frame with three button in AWT and swing	CO5
78	Program to display message with radio buttons in swing	CO5
79	Program to display "All The Best" in 5 different colors on screen. (Using AWT/Swing)	CO5

80	Program to implement event handling in a button "OK"	CO5
81	Java Program to implement BorderLayout	CO5
82	Java Program to implement GridLayout	CO5
83	Java Program to implement BoxLayout	CO5
34	Java Program to implement CardLayout	CO5
85	Java program to implement Generic class	CO5
36	Java program to illustrate Generic methods	CO5
37	Java program to implement wildcard in generics	CO5
38	Java program to implement of methods of HashSet	CO5
89	Java Program to implement methods available in HashMap class	CO5
90	Program to add, retrieve, and remove element from ArrayList	CO5
91	Create a method which can accept a collection of country names and add it to ArrayList with generic defined as String and return the List.	CO5
92	Create a method which can create a HashSet containing values 1-10. The Set should be declared with the generic type Integer. The method should return the Set.	CO5
93	Java program to implement autoboxing	CO5
94	Java program to implement unboxing	CO5
95	Develop a java class with a method <i>storeEvenNumbers(int N)</i> using ArrayList to store even numbers from 2 to N, where N is a integer which is passed as a parameter to the method <i>storeEvenNumbers()</i> . The method should return the ArrayList (A1) created.	CO5
96		CO5
97	Create a method which can accept a collection of country names and add it to ArrayList with generic defined as String and return the List.	CO5
	Textbooks	

Sr. No.	Book Details
1	Herbert Schildt," Java: A Beginner's Guide", McGraw-Hill Education 2nd edition
2	E Balagurusamy, "Programming with Java A Primer", TMH, 4th edition.
	Reference Books
Sr. No.	Book Details
1	Cay S. Horstmann, "Core Java Volume I – Fundamentals", Prentice Hall
2	Joshua Bloch," Effective Java", Addison Wesley
3	Herbert Schildt," Java - The Complete Reference", McGraw Hill Education 12th edition
	Links
Unit 1	https://www.youtube.com/watch?v=r59xYe3Vyks&list=PLS1QulWo1RlbfTjQvTdj8Y6yyq4R7g-Al
Unit 2	https://www.youtube.com/watch?v=ZHLdVRXIuC8&list=PLS1QulWo1RIbfTjQvTdj8Y6yyq4R7g-Al&index=18
Unit 3	https://www.youtube.com/watch?v=hBh_CC5y8-s
Unit 4	https://www.youtube.com/watch?v=qQVqfvs3p48
Unit 5	https://www.youtube.com/watch?v=2qWPpgALJyw

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Na	Subject Name: Data Structures and Algorithms-I Lab	
Subject Code: BCSE0351 Applicable in Department: CSE/IT/CS/AI/AIML/IG		
Pre-requis	site of Subject: C, Python	
	Lab Experiments	
Course Ob	pjective: Learn to implement linear data structures.	
	Course Outcomes (CO)	
Course ou	tcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO1	Implementing Single and Multi-dimensional array with their applications like searching and Sorting to	
CO2	Implement Link list, Stack and Queues with their applications.	К3
CO3	Implementation and analysis of various Divide and Conquer, Greedy Algorithms.	K4
	List of Practical	,
Sr. No	Program Title	CO Mapping
1	Construct a program to compare the time complexities of selection, bubble and insertion sort by plot	ting the graph CO1

2	Construct a program to compare the time complexities of various algorithms by varying size "n".	CO1
3	Construct a Code to find the maximum element in an array.	CO1
4	Construct a Code to calculate the sum of all elements in an array.	CO1
5	Construct a Code to reverse the elements of an array.	CO1
6	Construct a Code to check if an array is sorted in ascending order.	CO1
7	Construct a Code to count the occurrence of a specific element in an array.	CO1
8	Construct a Code creation and traversal of 2D Array in row major and column major order.	CO1
9	Construct a code to print the transpose of a given matrix using function	CO1
10	Program to find if a given matrix is Sparse or Not and print Sparse Matrix	CO1
11	Construct a code to represent a sparse matrix in triplet form.	CO1
12	Construct a code to Implement Linear Search	CO1
13	Construct a code to implement Binary Search	CO1
14	Construct a program to Implement Selection Sort	CO1
15	Construct a program to Implement Bubble Sort	CO1
16	Construct a program to Implement Insertion Sort	CO1
17	Construct a program to Implement Shell Sort	CO1
18	Construct a program to Implement Counting Sort	CO1
19	Create a single linked list and perform basic operations (insertion, deletion, traversal).	CO2
20	Create a double linked list and perform basic operations (insertion, deletion, traversal).	CO2
21	Create a circular linked list and perform basic operations (insertion, deletion, traversal).	CO2
22	Create a circular double linked list and perform basic operations (insertion, deletion, traversal).	CO2
23	Reverse a single linked list.	CO2
24	Check if a linked list is palindrome.	CO2

25	Reverse a double linked list.	CO2
26	Find the middle element of a single linked list.	CO2
27	Find the middle element of a double linked list.	CO2
28	Merge two sorted single linked lists.	CO2
29	Detect and remove a loop in a circular linked list.	CO2
30	Construct a code to add two polynomials using linked list	CO2
31	Construct a program to Implement stack using array	CO2
32	Construct a program to Implement stack using a linked list	CO2
33	Construct a code to Infix to postfix conversion using a stack	CO2
34	Construct a code for Balanced parentheses checker using a stack	CO2
35	Implement Reverse a string using a stack.	CO2
36	Implement Binary Search using Recursion.	CO2
37	Construct a python program to print Fibonacci Series using Recursion.	CO2
38	Construct a code to implement Tower of Hanoi.	CO2
39	Construct a program to Implement queue using array.	CO2
40	Construct a code for Implementing a circular queue.	CO2
41	Construct a program to Implement queue using stack	CO2
42	Construct a program to Implement priority queue	CO2
43	Construct a program to Implement double ended queue	CO2
44	Construct a program to Implement Merge Sort with recursion	CO3
45	Construct a program to Implement Quick Sort with recursion	CO3

46	Construct a program to Implement Merge Sort using iteration	CO3
47	Construct a program to Implement Quick Sort using iteration	CO3
48	Construct a program to Implement fractional knapsack	CO3
49	Construct a program to Implement Activity selection problem	CO3
50	Construct a program to Implement Job scheduling problem	CO3
*Competitive coding list will be shared with the students.		

(An Autonomous Institute)
School of Computer Science & Information Technology

Subjec	t Name: Digital Logic and IoT Systems Lab	L-T-P [0-0-2]
Subject Code: BCSE0354 Applicable in Department: C		
Pre-rec	quisite of Subject: Fundamental knowledge of Basic Electronics & Characteristics of Semiconducto	rs.
	Lab Experiments	
orototy	e Objective: The lab practical component of the course aims to provide students with hands-on expensions, and testing digital logic circuits and IoT systems. Through lab sessions, students should develop per tools for circuit design, simulation, and programming. Course Outcomes (CO)	
Course	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Understanding Digital Binary System and design data selector circuits with logic Gates	К3
CO2	Design the Sequential circuits with the help of combinational circuits and feedback element.	К3
CO3	The operation and installation of different IoT development boards and their Interfacing with various sensors.	К3
	List of Practical	
Sr. No	o. Program Title	СО

		Mapping
1	Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet,	CO1
_	Concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.	COI
2	Implementation of the given Boolean function using logic gates in both SOP and POS forms.	CO1
3	Implementation of 4-bit parallel adder using 7483 IC.	CO1
4	Implementation and verification of Decoder using logic gates.	CO1
5	Implementation and verification of Encoder using logic gates	CO1
6	Implementation of 4:1 multiplexer using logic gates.	CO1
7	Implementation of 1:4 demultiplexer using logic gates.	CO1
8	Design a half adder and full adder	CO1
9	Design and Implementation of a magnitude comparator	CO1
10	Design and implementation of the binary to decimal convertor	CO1
11	Design and implementation of the binary to hexadecimal convertor	CO1
12	Design and implementation of the binary to excess-3 code convertor	CO1
13	Designing 4-bit binary-to-gray convertor	CO1
14	Design and implement a of Binary to BCD Converter	CO1
15	Design and implement a digital circuit of 3×8 decoder and 8×3 encoder	CO2
16	Design and implement a digital a 4X16 encoder	CO2
17	Design a ring counter	CO2
18	Describing hardware in IoT: Hardware Architecture of Arduino UNO Board, Types of Arduino Board, Hardware Architecture of Node MCU, Introduction Various types of Sensors	CO3
19	Fundamentals of Arduino Programming: Installation of Arduino IDE, Working with structures, Variables, Flow control, Digital i/o f. Analog i/o, Time, Math, Random, Serial	CO3

20	Interfacing Arduino with I/O Devices: Push button, LED, Ultrasonic Sensor Temperature, Sensor, LDR Sensor	CO3
21	Connecting NODE MCU with Internet: Connecting Node MCU with Wifi Hotspots, Sending Data to Thing speak Server using Node MCU	CO3
22	Develop real-time projects with Arduino: Develop real-time projects with Arduino and Node MCU using the various Sensors	CO3

CO5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)
School of Computer Science & Information Technology

Subjec	Subject Name: Artificial Intelligence and Cyber Ethics		
Subjec	Subject Code: BNC0301 Applicable in Department: A		
Pre-re	quisite of Subject: Basic understanding of computer systems and ethics.		
	Objective : The course aims to foster critical thinking about ethical issues, promote responsible use of technology, and students can identify, analyze, and address ethical dilemmas in AI and cyber domains.		
	Course Outcomes (CO)		
Course	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)	
CO 1	Learn key principles of AI ethics, summarizing ethical considerations and applications in AI development and deployment.	K2	
CO2	Apply policies and framework for Fairness in Al and Machine Learning.	К3	
CO3	Apply privacy and security concepts, risk management and regulatory compliance in the field of AI and Cyber Security.	К3	
CO4	Understand the nature of cybercrimes, the principles of intellectual property rights (IPR), and the legalmeasures necessary to address and prevent these issues.	К2	
CO5	Describe the impact of ALin Society, employment and workforce	K2	

Describe the impact of AI in Society, employment and workforce

	Syllabus				
Unit No	Modul e Name	Topics covered	Pedagogy	Lecture Required (L+P)	CO Mapping
	Module 1.1: An overviewto Al Ethics	Definition of AI. Ethical principles in AI. Sources of AI data.Legal implications of AI security breaches, Privacy and AI regulations. Key Principles of responsible AI, transparency adaccountability, Dualuse dilemma, Human-centric design. Introduction to Cyber Laws and Ethics, Historical development of cyber laws, Legal frameworks	Lecture and Case studies	5	CO1
2 Fairness and Favoritis m in Machine Learning	Machine Learning	Introduction to Fairness and Bias in AI, Types of Fairness andBias. Impact of Bias and Fairness in AI, techniques for measuring Fairness and Bias. Techniques for mitigating bias. Current policies and frameworks for fairness in AI. Bias in data collection, Fairness in data processing. Generative AI, Types of Bias in Generative AI.	Lecture and Case Studies	6	CO2
3 Al Ethics and Cyberse curity Principl es & Case Studies	Module 3.1: Al Ethics and Cybersecurity Principles	Importance of privacy and security in AI, AI specific security tools and software, privacy-preserving machine learning (PPML) and privacy-preserving data mining (PPDM) Ethical considerations in phases of AI development life cycle, Risk management: Risk assessment and incident response Regulatory compliance: GDPR, HIPAA	Lecture and Case Studies	8	CO3

	Textbooks		
Sr. No.	Book Details		
1.	Introduction to Information Security and Cyber Laws, Simplified Chinese Edition by Surya Prakash Tripathi, RitendraGoel, 1 January ,2014		
2.	AI ETHICS: Paving the Path for Responsible Machine Learning, Shivanand Kumar, 2014		
	Reference Books		
Sr. No	Book Details		
1	AI ETHICS (The MIT Press Essential Knowledge series), by Mark Coeckelbergh, 2018		
2	Computers, Internet and New Technology Laws by Karnika Seth – by Karnika		
	Links		
Unit 1	ttps://www.youtube.com/watch?v=VqFqWIqOB1g		
Unit 2	ttps://www.youtube.com/watch?v=hVJqHgqF59A		
Unit 3	ttps://www.youtube.com/watch?v=O5RX_T4Tg24		
Unit 4	ttps://www.youtube.com/watch?v=RJZ0pxcZsSQ		
Unit 5	ttps://www.youtube.com/watch?v=I9FOswjTSGg		

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Engineering Mathematics -IV L-T-P [3-1-0]

Subject Code: BAS0402 Applicable in Department: All Branches

Pre-requisites of the Subject: Knowledge of Mathematics I and II of B. Tech or equivalent.

Course Objective- The objective of this course is to familiarize the students with statistical techniques. It aims to present the students with standard concepts and tools at an intermediate to superior level that will provide them well towards undertaking a variety of problems in the discipline.

Course Outcomes (CO)

Course	Course outcome: After completion of this course students will be able to:	
		Knowledge
		Level(KL)
CO 1	Understand the concept of correlation, moments, skewness and kurtosis and curve fitting.	К2
CO 2	Apply the concept of hypothesis testing and statistical quality control to create control charts.	К3
CO 3	Remember the concept of probability to evaluate probability distributions.	K1
CO 4	Understand the concept of Mathematical Expectations and Probability Distribution.	K2
CO 5	Solve the problems of Time & Work, Pipe & Cistern, Time, Speed & Distance, Boat & Stream, Analogy.	K3

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
al	Statistical	regression, nonlinear regression and multiple linear regression	∟	8	Assignment 1.1	CO1
al	Module 2.1: Statistical Techniques-II		Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment-2.1	CO2
Probabil ity and	Probability and Random	Random Variable: Definition of a Random Variable, Discrete Random Variable, Continuous Random Variable, Probability mass function, Probability Density Function, Distribution functions. Multiple Random Variables: Joint density and distribution Function, Properties of Joint Distribution function, Marginal density Functions, Conditional Distribution and Density, Statistical Independence, Central Limit Theorem (Proof not expected).	Board, PPT,	8	Assignment-3.1	CO3
Expecta tions and Probabil	Module 4.1: Expectations and Probability Distribution		CI.	8	Assignment-4.1	CO4

	Total			40		
tion 5 Aptitud	Module 5.1:		Class room Teaching, Smart Board, PPT, M- tutor.	8	Assignment-5.1	CO5
Distribu						

	Textbooks				
Sr. No.	Book Details				
1.	P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003(Reprint).				
2.	S. Ross: A First Course in Probability, 6th Ed., Pearson Education India, 2002.				
3.	W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.				
4.	Haitao Guo, Ramesh A. Gopinath, C.S. Burrus, IVAN W AUTOR SELESNICK, JAN E AUTOR ODEGARD, Sidny Burrus.				
	Reference Books				
Sr No	Book Details				
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.				

2.	T. Veerarajan : Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi.
3.	R.K. Jain and S.R.K. Iyenger: Advance Engineering Mathematics; Narosa Publishing House, New Delhi.
4.	J.N. Kapur: Mathematical Statistics; S. Chand & Sons Company Limited, New Delhi.
5.	D.N.Elhance, V. Elhance & B.M. Aggarwal: Fundamentals of Statistics; Kitab Mahal Distributers, New Delhi.
	Links
Unit 1	https://archive.nptel.ac.in/courses/111/105/111105042/ https://archive.nptel.ac.in/courses/110/107/110107114/
Unit 2	https://archive.nptel.ac.in/courses/103/106/103106120/
Unit 3	https://archive.nptel.ac.in/courses/117/105/117105085/
Unit 4	https://archive.nptel.ac.in/courses/111/104/111104032/
Unit 5	https://www.youtube.com/watch?v=KZ_M5RWaP6A https://www.youtube.com/watch?v=WP4jsNRgfa4 https://www.youtube.com/watch?v=jPaQDKbahU8 https://www.youtube.com/watch?v=FwiWJLicakg

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Technical Communication L-T-P [2-1-0]

Subject Code: BASL0401 Applicable in Department: All Branches

Pre-requisite of Subject: B2 (CEFR level) in the Core Skills test; B1/B2 in the Speaking and Writing tests

Course Objective: To develop communication and critical thinking skills necessary for succeeding in the diverse and ever-changing workplace of the twenty first century and help the students communicate effectively, creatively, accurately, and appropriately.

Course Outcomes (CO)

Course	Course outcome: After completion of this course students will be able to:			
CO 1	Comprehend the principles and functions of technical communication.	K2		
CO2	Write for a specific audience and purpose to fulfil the provided brief.	K5		
CO3	Identify and produce different kinds of technical documents.	K2, K3		
CO4	Apply effective speaking skills to efficiently carry out official discourses.	K3		
CO5	Demonstrate understanding of communication through digital media.	K5		

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1 Introdu ction to Technic al Commu nication	Module 1.1: Introduction to Technical Communication	 Definition, Process, Types, Levels, Flow and Barriers to Technical Communication with emphasis on cultural differences and gender sensitivity. Genderneutral language. Need for and Importance of Technical Communication - Significance of audience in technical communication Tone- Formality and Informality 	Interactive & Flipped classroom method	5	Assignment 1	CO1
al	Module 2.1: Technical Writing 1	 Technical writing and technical vocabulary Business letters/emails Types and format, Content Organization Cultural Variety, Tone, and Intention Bad news message, good news message Advertisements, Editorial press releases Notices, agenda, and minutes of meeting Job application, CV, and Resume' 	Interactive & Flipped classroom method	10	Assignment 2	CO2
al	Module 3.1: Technical Writing 2	 Technical reports – types & formats Structure of a report (short & long) Ethical Writing – Copy Editing, Referencing and Plagiarism 	PPT, Activities	5	Assignment 3	CO3

	Module 4.1: Public Speaking	 Technical Proposal - structure and types Technical/ Scientific paper writing Components of effective speaking Seminar and conference presentation Conducting/ participating in meetings Appearing for a job interview 	Interactive sessions, activities, mock interviews	8	Assignment 4	CO4
Remote	Module 5.1: Virtual/Remote Communication	 Understanding remote work – using different online platforms Virtual etiquette- email ids, usernames Developing online written correspondence- blogs, WhatsApp, LinkedIn. What not to write on social media. Participating in online Conferences/seminars/meetings Mobile Etiquette 	Interactive sessions, activities	8	Assignment 5	CO5
		Total		36		

	Textbooks				
Sr. No.	Book Details				
1.	Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma, 4th Edition, Oxford University Press, 2023, New Delhi.				
	Reference Books				
Sr. No.	Book Details				
1	Technical Communication: A Practical Guide by William S. Pfeiffer and Kaye A. Adkins, Pearson, 2020, UK.				
2	The Essentials of Technical Communication by Elizabeth Tebeaux and Sam Dragga, Oxford University Press, 2021, UK.				
3	Technical Communication Today by Richard Johnson-Sheehan, Pearson, 2020, UK				
4	Strategic Communication in Technical Professions" by Susan K. Miller-Cochran and Jason Tham, Routledge, 2020, UK.				
5	Technical Writing for Engineers & Scientists by Michelle V. Z. Holmes, McGraw Hill, 2020, US.				
6	Speaking: Second Language Acquisition, from Theory to Practice by William Littlewood, Cambridge University Press, 2022, UK.				
7	The Writing Revolution: A Guide to Advancing Thinking Through Writing in All Subjects and Grades by Judith C. Hochman and Natal Wexler, Jossey-Bass, 2022, USA.				

(An Autonomous Institute)
School of Computer Science & Information Technology

L-T-P [3-0-0]

Subject Name: Theory of Automata and Formal Languages

Subject Code: BCSE0404 Applicable in Department: CSE/IT/CS/AI/AIML/IOT/DS/CYS

Pre-requisite of Subject:

- Mathematical Foundations
- Fundamental of Computer System

Course Objective: The Theory of Automata and formal Languages is a comprehensive study of both foundational principles and practical application in Computer Science. It aims to cover formal methods of computation, exploring theoretical frameworks like formal languages and the classification of machines based on language recognition capabilities.

Course Outcomes (CO)

Course	outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO1	Understand the concepts of Finite State Machines for modeling and their power to recognize the languages.	K2
CO2	Understand and identify the equivalence between the Regular Expression and Finite Automata.	K2
CO3	Define Grammar for Context Free Languages and use Pumping Lemma to disprove a Formal Language being Context- Free.	К3
CO4	Implement Pushdown Automata (PDA) for Context Free Languages and Transform the PDA to Context Free Grammar and vice-versa.	К3
CO5	Implement and analyze Turing Machine for Recursive and Recursive Enumerable Languages.	К4

	Syllabus							
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping		
ction to Finite	Introduction to Finite	Role of Automata and Formal languages, Alphabet, String, Grammar, Language, Chomsky Hierarchy of languages. Introduction to Finite State Machine, Deterministic Finite Automaton (DFA) and Non-Deterministic Finite Automaton (NFA), Equivalence of NFA and DFA, NFA with ∈-Transition, Equivalence of NFA's with and without ∈-Transition, Minimization of Finite Automata, Limitations and Applications of Finite Automata, Concepts of Moore and Mealy Machine's, Equivalence of Moore and Mealy Machine.	Lectures, PPTs, Notes and Smart Interactive Panel	12	Practice Questions Based on Finite Automata, Equivalence of Finite Automata	CO1		
Languag e and Finite	Module 2.1: Regular Language and Finite Automata	Regular Expressions, Regular Sets, Properties of Regular Expression, Identity Rules, Finite Automata and Regular Expression, Arden's theorem, Regular Grammars-Right Linear and Left Linear grammars, Conversion of FA into Regular grammar and Regular grammar into FA, Regular and Non-Regular Languages- Closure properties and Decision properties of Regular Languages, Pumping Lemma, Application of Pumping Lemma.	Lectures, PPTs, Notes and Smart	9	Practice Questions Based on Regular Expression and Applications of Pumping Lemma	CO2		
3 Context Free Languag e and Gramm ar	Context Free Language and	Context Free Grammar (CFG)-Definition, Derivations, Derivation Trees and Ambiguity, Simplification of CFG, Normal Forms- Chomsky Normal Form (CNF), Greibach Normal Form (GNF), Pumping Lemma for CFL, Closure properties of CFL, Decision Properties of CFL.	PPTs, Notes	8	Practice Questions Based on the Context Free Grammar and Context Free Language	CO3		
wn	Module 4.1: Pushdown Automata	Introduction to Pushdown Automata, Representation, Deterministic and Non-Deterministic Pushdown Automata, The Language of PDA: Acceptance by Final State and Acceptance by Empty Stack, Design of Pushdown Automata, Equivalence of	PPTs, Notes and Smart Interactive	8	Practice Questions Based on Designing of PDA ,CFG to PDA and Vice Versa	CO4		

Turing Machin	Module 5.1: Turing Machine	Context Free Grammars and Pushdown Automata, Applications of Push Down Automata, Two Stack Pushdown Automata. Basic Concept of Turing Machine, Model, Representation of Turing Machines, Techniques for Turing Machine Construction, Variants of Turing Machine, Universal Turing machine, Linear Bounded Lean Automata, Church's Thesis, Recursive and Recursively Enumerable language, Closure Properties of Recursive and Recursively Enumerable Languages, Introduction to Undecidability, Halting Problem, Post's Correspondence Problem (PCP), Modified Post Correspondence Problem(MPCP), Applications of Turing Machine.	PTs, Notes and Smart nteractive	8	Practice Questions Based on Construction of Turing Machine and Decidability	CO5
	Total			45		

	Textbooks				
Sr. No.	Book Details				
5111101	Book Betails				
1.	K.L.P. Mishra, and N. Chandrasekharan,"Theory of Computer Science-Automata, Languages and Computation",PHI, 3rd Edition, 2006.				
2.	Adesh K. Pandey and Manisha Sharma," Automata Theory and Formal Languages", S K Kataria and Sons, 1st Edition, 2019.				
	Reference Books				
C. N.	Double Double He				
Sr. No.	Book Details				
1.	A. M. Padma Reddy, "Finite Automata and Formal Languages- A simple Approach", Cengage Learning India Private Limited, 2019.				
2.	A.A. Puntambekar," Formal Languages and Automata Theory", Vikas Publishing House,2 nd Edition, 2008				
3.	J Martin, "Introduction to languages and the theory of computation", Tata McGraw Hill ,3rd Edition, 2002.				

	Links					
Unit 1	https://onlinecourses.nptel.ac.in/noc24_cs71/preview					
Unit 2	https://www.youtube.com/watch?v=VOaAuHAwHT4&list=PL_obO5Qb5QTEihQ35PgzjZSh7PveVt-iF					
Unit 3	https://www.youtube.com/watch?v=9kuynHcM3UA&list=PLmXKhU9FNesSdCsn6YQqu9DmXRMsYdZ2T					
Unit 4	https://www.youtube.com/watch?v=eqCkkC9A0Q4&list=PLEbnTDJUr_IdMFmDFBJBz0zCsOFxfK					
Unit 5	https://www.youtube.com/watch?v=XslI8h7cGDs&list=PLxCzCOWd7aiFM9Lj5G9G_76adtyb4ef7i					

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Data Structures and Algorithms-II L-T-P [3-0-0]

Subject Code: BCSE0401 Applicable in Department: CSE/IT/CS/AI/AIML/IOT/DS/CYS

Pre-requisite of Subject: C, Python

Course Objective: The objective of the course is to learn the basic concepts of algorithm analysis, along with the implementation of non-linear data structures.

Course Outcomes (CO)

Course outcome: After completion of this course students will be able to:		
		Knowledge
		Level(KL)
CO 1	Apply tree structures effectively demonstrating proficiency in tree operations and algorithms.	К3
CO2	Analyse the graph data structure and implement various operations for problem solving.	К4
CO3	Implementation and analysis of dynamic programming for efficient problem-solving across diverse contexts.	К4
CO4	Apply efficient backtracking and branch &bound techniques across diverse problem-solving scenarios.	К3
CO5	Understand advanced data structures, their implementation and application for efficient data manipulation and retrieval.	K2

Unit	Module	Topics Covered	Pedagogy	Lecture Required L=T+P	Practical/Assi gnment/Lab	CO Mapping
1 Design and Analysi s of Algorit hms: Trees	Module 1.1: Trees Module 1.2: Application of Trees	Trees: Terminology used with Trees, Binary Tree, Memory representation of Tree, Traversal Algorithms: In-order, Pre-order, and post-order. Constructing Binary Tree from given Tree Traversal, Operation of Insertion, Deletion, Searching & Modification of data in Binary Search tree, Binary Heaps, Threaded Binary trees, Traversing Threaded Binary trees, AVL Tree. Priority Queue, Heap Sort, Huffman codes.	Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative Learning, competitive coding Projects, and Assessments.	8T+10P		CO1

Design and Analysi s of Algorit hms: Graphs	Module 2.1: Graphs Module 2.2: Algorithms on Graphs	Terminology used with Graph, Data Structure for Graph Representations: Adjacency matrices, Adjacency List. Graph Traversal: Depth First Search and Breadth First Search. Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prim's and Kruskal's algorithm. Directed- Acyclic Graph, Transitive Closure and Shortest Path algorithms:	Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative Learning, competitive coding, Projects, and Assessments.	8T+10P	Depth First Search and Breadth First Search. Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prim's and Kruskal's algorithm. Directed- Acyclic Graph, Transitive Closure, and Shortest Path	CO2
3 Dynam ic Progra mming	Module 3.1: Dynamic Programming	Dijkstra Algorithm, Bellman Ford Algorithm, Floyd Warshall's Algorithm. Dynamic Programming concepts 0/1 Knapsack, Longest Common Sub Sequence, Matrix Chain Multiplication, Resource Allocation Problem.	Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving,	8T+8P	algorithms: Dijkstra	CO3
			Collaborative Learning, competitive coding, Projects, and Assessments.			

		Textbooks Book De			
Total N	lo. of Lecture + Practical Labs (40	•			
5 Advanc ed- Data Structu res	Module 5.1: Advanced-Data Structures	Red-Black Trees, B – Trees, B+ Trees, Binomial Heaps, Fibonacci Heaps, Trees.	Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative Learning, Projects, Assessments.	8T+10P	CO5
4 Backtra cking, Branch and Bound	Module 4.1: Backtracking	Backtracking, Branch, and Bound with Examples Such as Travelling Salesman Problem, Graph Colouring, n-Queen Problem, Hamiltonian Cycles, and Sum of Subsets.	Lectures, Code Walkthrough s, hands-on programmin g, Problem Solving, Collaborative Learning, Projects, Assessments.	8T+10P	CO4

Lipschutz, "Data Structures" Schaum's Outline Series, Tata McGraw-hill Education (India) Pvt. Ltd, 2nd Edition, 2017

Wiley Publication, 1st Edition, 2021.

2

3	Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithms", Printice Hall of India, 4th Edition, 2022
	Reference Books
Sr. No.	Book Details
1	Reema Thareja, "Data Structure Using C", Oxford University Press, 2 nd Edition, 2014.
2	AK Sharma, "Data Structure Using C", Pearson Education India, 2 nd Edition,2011.
3	P. S. Deshpandey, "C and Data structure", Wiley Dreamtech Publication, 1st Edition, 2004.
	Links
Unit 1	https://www.youtube.com/watch?v=tORLeHHtazM&pp=ygUMdHJIZXMgIG5wdGVs
Unit 2	https://www.youtube.com/watch?v=9zpSs845wf8&pp=ygUcZ3JhcGgglGRhdGEgc3RydWN0dXJllCBucHRlbA%3D%3D
Unit 3	https://www.youtube.com/watch?v=5dRGRueKU3M&pp=ygUUZHluYW1pYyBwcm9ncmFtbWluZyA%3D
	https://www.youtube.com/watch?v=DKCbsiDBN6c&list=PL-Y5_GYVx275l87vW3LUzEJ-g7TDgn0Ts
Unit 4	https://www.youtube.com/watch?v=3RBNPc0_Q6g&pp=ygUuYmFja3RyYWNraW5nIGFuZCBicmFuY2ggYW5kIGJvdW5kIHByb2dyYW1taW5nIA%3D %3D
Unit 5	https://www.youtube.com/watch?v=8h80p_rYv1Y&list=PLv9sD0fPjvSHqIOLTIvHJWjkdH0IdzmXT

(An Autonomous Institute)
School of Computer Science & Information Technology

Subje	ct Name: Operating Systems	L-T-P [2-0-0]
Subje	ct Code: BCSE0403 Applicable in Department: CSE/IT/CS/AI/A	AIML/DS/CYS/IOT
Pre-re	equisite of Subject: Basic knowledge of computer fundamentals, C programming, Data structure and Computer org	anization.
	e Objective: The objective of this course is to provide an understanding of the basic and modern concepts of operations needed to develop and customize Linux shell programming	ng system and deliver
	Course Outcomes (CO)	
Course	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Understand various operating systems architecture with utilizing the command line interface (CLI) within a Linux environment.	K2
CO2	Understand and implement the various CPU scheduling algorithms.	К4
CO3	Analyse deadlock, concurrency, and synchronization into the system architecture.	К4
CO4	Identify and implement the memory management techniques and algorithms.	К3
CO5	Analyse file management system and implement distributed and virtual machine configurations on modern operating systems.	g K4

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1 Funda mental s & Shell scripti ng	Systems Module 1.2: Shell Scripting	Overview of Operating Systems, Operating system architecture, Types of Operating System: Batch OS, Multiprogramming OS, Multitasking OS, Multiprocessor OS, Real time OS, System call and kernel, Introduction to Linux Operating System, Basic Command Line Interface (CLI) Operations in Linux Shell Scripting Basics:	Lectures, PPTs, Notes and Smart Interactive Panel		Experiment/ Program 1.1 to 1.4	CO1
Proces	Module 2.1: Process Manageme nt	Process Performance Criteria, Process Transition Diagram, Process Control Block (PCB), Types of Schedulers: Long Term, Mid Term, Short Term Scheduler, CPU Scheduling- Pre-emptive and Non-Pre-emptive Algorithm (FCFS, SJF, SRTF, Non-Pre-emptive Priority, Pre-emptive Priority, Round Robin, Multilevel Queue Scheduling and Multilevel Feedback Queue Scheduling), Processes and Threads, Linux Process Management: ps, top, kill, nice	Lectures, PPTs, Notes and Smart	8 + 12	Experiment/ Program 1.1 to 1.4	CO2

ncy and Dead	Module 3.1: Concurrenc y and Deadlock Manageme nt	Concurrency: Race Condition, Critical Section, Inter Process Communication, Classical problem: Producer consumer, Dinning Philosopher, Reader writer, Sleeping barber, Process Synchronization: Lock variable, Peterson's Solution, Strict alternation, Lamport Bakery Solution, Test and set lock, and semaphore- counting, binary and monitor, Deadlock: Deadlock characterization, Prevention, Deadlock Avoidance: Bankers Algorithms, Deadlock detection, Recovery from Deadlock	Lectures, PPTs, Notes	8 +8	Experiment/ Program 1.1 to 1.4	CO3
4 Memo ry Manag ement	Module 4.1: Memory Management	Memory Management function, Loading and linking Address Binding, Memory management techniques, Contiguous technique- Fixed Partitions, variable partitions, Memory Allocation: Allocation Strategies (First Fit, Best Fit, and Worst Fit), Non-contiguous, Paging, Segmentation, Segmented paging, Virtual Memory Concepts, Demand Paging, Performance of Demand Paging, Page Replacement Algorithms: FIFO, LRU, Optimal and LFU, Belady's Anomaly, Thrashing	Lectures, PPTs, Notes and Smart Interactive Panel	8+10	Experiment/ Program 1.1 to 1.4	CO4
File Manag ement & Moder n Operat ing	Manageme nt Module 5.2:	File Management: Access Mechanism, File Allocation Method, Free Space Management: -Bit Vector, Linked List, DISK: Disk Architecture, HDD vs SDD, Disk Scheduling Modern Operating System: -Overview of modern operating system, Shared Memory concepts, Distributed system, Parallel	Lectures, PPTs, Notes and Smart Interactive Panel	4+10	Experiment/ Program 1.1 to 1.4	CO5

	system & its architecture, Virtual machines — hyperviser, Introduction to GPUs Case Study: Large File Storage in a Distributed Manner					
	Total	32(T) + 48(P)				
	Textbooks					
Sr No	Book Details					
1.	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne" Operating System Concepts Essentials", Willey Publication,8 ^{th Edition} ,2017.					
2.	Marks G. Sobell "A practical guide to Linux: Commands, Editors and Shell Programming", CreateSpace Independent Publishing Platform, 4 th Edition,2017.					
3.	Jason Cannon "LINUX for beginners", 1stEdtion,2014					
	Reference Books					
Sr. No.	Book Details					
1.	William Stallings "Operating Systems: Internals and Design Principles", Pearson Education	, 9 th Edition, 2019.				
2.	Charles Patrick Crowley, "Operating System: A Design-oriented Approach", McGraw Hill E	ducation ,2017,				

3. <u>Ganesh Naik</u> "Learning Linux Shell Scripting", Packt Publishing ,2nd Edition 2018.

	Links					
Unit 1	CS162 Lecture 1: What is an Operating System? (youtube.com)					
	Operating System #01 Introduction to OS, its Roles & Types (youtube.com)					
	Operating System #14 What is an Interrupt? Types of Interrupts - YouTube					
	https://www.youtube.com/watch?v=akU1Ji8Vzdk&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ					
	https://www.youtube.com/watch?v=rRGCGZ6OHw8&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=2					
Unit 2	Operating System #03 Programs & Processes, System Calls, OS Structure (youtube.com)					
	Operating System #18 CPU Scheduling: FCFS, SJF, SRTF, Round Robin - YouTube					
	Operating System #19 Priority Scheduling Algorithms, Multilevel Queues - YouTube					
	Operating System #20 Multi Processor Scheduling (youtube.com)					
	Operating System #33 Threads: Thread Model, Thread vs Process, pthread library (youtube.com)					
	Operating System #34 Threads: User level & Kernel level thread, Threading issues (youtube.com)					
	https://www.youtube.com/watch?v=3eG27YUbzyM&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=3					
Unit 3	CS162: Lecture 6: Synchronization 1: Concurrency and Mutual Exclusion (youtube.com)					
	CS162: Lecture 6.5: Concurrency and Mutual Exclusion (Supplemental) (youtube.com)					
	Operating System #04 CPU Sharing, Race Conditions, Synchronization, CPU Scheduling (youtube.com)					
	Operating System #26 Bakery Algorithm - YouTube					
	Operating System #27 Hardware Locks: Spinlock & its Usage (youtube.com)					
	Operating System #31 Deadlocks: Deadlock Detection & Recovery (youtube.com)					

	Operating System #32 Dealing with Deadlocks Deadlock Avoidance & Prevention (youtube.com)
Unit 4	Operating System #05 Memory Management: Process, Fragmentation, Deallocation, (youtube.com)
	Operating System #06 Virtual Memory & Demand Paging in Operating Systems (youtube.com)
	Operating System #07 MMU Mapping How Virtual Memory Works? - YouTube
Unit 5	https://www.youtube.com/watch?v=qbQCQ0U6H0o
	https://www.youtube.com/watch?v=SnKgEuUfV4k
	https://www.youtube.com/watch?v=cVFyK1f5lDw
	https://www.youtube.com/watch?v=Z0Vkrn9faoM&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=4
	https://www.youtube.com/watch?v=_BtDcroOTSA

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Database Management Systems L-T-P [0-0-6]

Subject Code: BCSE0452 Applicable in Department: CSE/IT/CS/AI/AIML/ IOT/DS/CYS

Pre-requisite of Subject: - It is recommended to have fundamental computer knowledge that includes concepts of computer architecture, storage and hardware. Knowledge of data structures and algorithms and programming will be an added benefit.

Course Objective: - The objective of the course is to introduce about database management systems, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information in relational & non-relational databases.

Course Outcomes (CO)

Course o	utcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO 1	Understand and Apply ER model for conceptual design of the database.	K3
CO2	Execute SQL and apply the normalization to improve the database design.	К3
CO3	Implement and justify the complex queries in database with different applications.	K5
CO4	Understand and execute the concept of PL/SQL, transaction and concurrency control.	K3
CO5	Evaluate and implement Relational and Non-Relational database on different tools for real-world applications.	K5
	Syllabus	

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1 Introduction of Database &	Introduction about the DBMS	Basic Concept: - Introduction of SDLC, Data, Information, Database, DBMS, History of Database, Database system Vs File system, Data models & Types of Data Models Relational Database term: - Relation, Tuple, Attribute and Domain, Codd Rules				
Conceptual Designing	Module1.2: Design & Implement the ER Diagram			8+8	Experiment/ Program 1.1 to 1.8	
	Module 1.3: Introduction on SQL, Implement the DDL, DML, DCL & TCL	Introduction on SQL & Types of SQL commands: -DDL, DML, DCL, TCL	and Smart Interactive Panel			CO1
	Module 1.4: Introduction on Relational Algebra	Basic of Relation Algebra & Operations, Query Optimization				

2		Keys & Types of Keys: - Super key, Candidate Key, Primary Key, Alternative Key Composite Primary key, Foreign Key, unique and Composite Unique key				
Basic of SQL						
& Normalizati on	Module 2.2: Implementati on of Data Constraint	Data Constraint: -Null, Not Null, Default and check Constraint	Chalk &			
	Implementati on of Aggregate	Use of Aggregate Function Uses of String Functions in SQL Uses of mathematical functions in SQL Uses of Advanced Functions in SQL Use of Clause: Where, Group by, Having and Order by	Duster/ Lectures, PPTs, Notes and Smart Interactive Panel	ı /+ı()	Experiment/ Program 2.1 to 2.11	CO2
		Functional Dependencies, Normalization & Types of Normalization, Candidate Key, Minimal Cover of FD's				

		Operator & Predicates: - Like, Between, Aliases, distinct, limit,			
3 Introduction of Complex Queries	Module3.1: Operator & Predicates	Implementation of Logical operator: - And, Or, Not			
	Module3.2:	Set Theory Operator: - Union, Intersect, Minus.	-		
	Set Theory Operator		Chalk &		
	Module3.3: Binary Operator	Binary Operator: - Cartesian Product, Join:-Inner Join: - Natura Join, Equi Join & Non Equi Join Outer Join:- Left Outer Join, Right Outer Join and Full Outer Join Division Operator	Lectures, PPTs Notes	Experiment/ Program 3.1 to 3.9	CO3
	Module 3.4: Nested Query	Nested Query or Sub Query: -IN, NOT IN, Exists, Not Exists, Al and Any			
	Module 3.5: Understand& Implementat on the database connectivity	Programming Languages			

and Transaction & Concurrenc y control	Implementati on index, Views and Array Module 4.2: Implementati	Managing Indexes, Synonyms and Sequences, Managing Views, Managing Data in Different Time Zones, Array Function & Operators, Introduction of PL/SQL Implementation of PL/SQL Function, Procedure, Trigger, Cursor	Chalk & Duster/ Lectures, PPTs, Notes and Smart	6+8	Experiment/ Program 4.1 to 4.10	CO4
	Implementati on of Transition management	Transaction system: - Life cycle of transaction, ACID Properties Schedule & Types of Schedule, Recoverability Concurrency Control Techniques: Concurrency Control, Locking Techniques for concurrency control, 2-phase Locking protocol Transaction & Data Control: -Grant, Revoke, commit & Rollback				

Introduction of NoSOL With	Understand NoSQL Concept and implement the CRUD operations					
	Implement	MongoDB Collection & Document, CRUD operations, MongoDB Shell & their commands,	Duster/ Lectures, PPTs, Notes and Smart Interactive Panel	1 X+1/	Experiment/ Program 5.1 to 5.10	CO5
	Total 36L+48P					

List of Practicals

	List of Practicals				
Lab No.	Program Logic Building	CO Mapping			
1	Understand and implement the different ER diagram notation with their relationship and Cardinalities.				
2	Creating ER Diagram for company Database. Company database have entities like employee, departments, projects and dependents also implement the relationship and cardinalities between the entities with their relevant attribute.	CO1			
3	Design an ER diagram for a travel agency that includes entities such as travellers, bookings, destinations, and itineraries. also implement the relationship and cardinalities between the entities with their relevant attribute.	CO1			
4	Converting Company & Travel Agency ER Model to Relational Model (Represent entities and relationships in tabular form, represent attributes as columns, identifying keys).	CO1			
5	Each students create at least one ER & EER diagram from real world problem and convert in tabular from with all needed constraint.	CO1			
6	Implement DDL and DML commands	CO1			
7	Implement DCL & TCL commands	CO1			
8	 i. Create Database, Rename Database, Delete Database in relational database tool. ii. Create table employee with attributes <pre>Emp_no<datatype><size></size></datatype></pre>	CO1			

	iii. Insert data into the table	
	iv. Implementation of select command	
	v. Implementation of update command	
	vi. Implementation of alter command	
	vii. Implementation of delete command	
	viii. Implementation of rename command.	
	ix. Implementation of rollback command	
	x. Implementation of commit Command	
	xi. Implementation of Truncate Command	
	xii. Implementation of Drop Command	
9	Implementation of I/O Constraint: Primary Key, composite primary key, Foreign Key with on delete set null and	CO2
	on delete set null constraint	
10	Implementation of constraint: Unique Key and Composite unique key and uses Unique key as foreign key.	CO2
11	Implementation of Business Constraint: Null, Not Null, Default, Check.	CO2
12	Implement and apply the different form of normalization approach on company /Travel Agency Database .	CO3
13		CO2
	Reduction & Implementation in SQL for ER Diagram of Company Database: -	
	 Create table for EMPLOYEE, DEPARTMET, PROJECT, DEPENDENTS and WORK_ON with all needed keys and other constraints. 	
	ii. Populated all table with atleast Ten records in each table as per as applied constraints.	
14	Practicing Queries using Like, Between, Aliases, distinct Operator & Predicate.	CO2
15	Implementation of Aggregate Functions.	CO2
16	Implementation of Scalar, Mathematical and Advanced functions.	CO2
17	Implementation of Queries using Where, Group by, Having and Order by Clause.	CO2
18	Implementation and uses of clause and operators on Company/ Travel Agency or other database.	CO2

	i. Find the name of employee whose name start with A.	
	ii. Find the name of employee where 'hi' in any position.	
	iii. Find the name of employee whose 'r' have in second position.	
	iv. Find the details of employee whose salary is less than 70000.	
	v. Find the name of employee whose name start with V and end with I.	
	vi. Find the average salary of each department	
	vii. Find the max salary of each department	
	viii. Find the sum of salary of department that have more than three employees in ascending order.	
	ix. Find the empid of Employee who work in more than 3 project.	
	x. Find the empid who have more than one dependent.	
	xi. K. Implement the concept of rollback and commit on Employee Table	
19	Create a table EMPLOYEE with following schema:-(Emp_no, E_name, E_address, E_ph_no, Dept_no, Dept_name,Job_id, Designation, Salary)	
	Write SQL statements for the following query.	
	i. List the E_no, E name, Salary of all employees working for MANAGER.	
	ii. Display all the details of the employee whose salary is more than the Sal of any IT PROFF.	
	iii. List the employees in the ascending order of Designations of those joined after 1981.	
	iv. List the employees along with their Experience and Daily Salary.	
	v. List the employees who are either 'CLERK' or 'ANALYST' .	
	vi. List the employees who joined on 1-MAY-81, 3-DEC-81, 17-DEC-81,19-JAN-80.	
	vii. List the employees who are working for the Deptno 10 or 20.	
	viii. List the E-names those are starting with 'S'.	
	ix. Display the name as well as the first five characters of name(s) starting with 'H'	
	x. List all the emps except 'PRESIDENT' & 'MGR" in asc order of Salaries.	
	xi. Display total salary spent for each job category.	
	xii. Display lowest paid employee details under each manager.	
	xiii. Display number of employees working in each department and their department name.	
	xiv. Display the details of employees sorting the salary in increasing order.	
	xv. Show the record of employee earning salary greater than 16000 in each department.	
	xvi. Add constraints to check, while entering the empno value (i.e) empno > 100.	

	xvii. Define the field DEPTNO as unique.	
	xviii. Create a primary key constraint for the column (EMPNO).	
20	Implementation of Queries using set theory operators UNION, INTERSECT, MINUS.	CO3
21	Implementation of Queries using Inner Join:- Natural Join , Equi Join & Non Equi Join	CO3
22	Implementation of Queries using Outer Join :- Left Outer Join, Right Outer Join and Full Outer Join	CO3
23	Implementation of Queries nested Queries or Sub Queries: - IN, NOT IN, Exists, Not Exists, All and Any.	CO3
24	Apply the set theory operators, join's and nested queries on company database (Case Study-1)	
	Write the SQL Queries for the following statement	
	 i. Retrieve the names of employees in department 5 who work more than 10 hours per week on the 'ProductX'project. ii. List the names of employees who have a dependent with the same first name as themselves. iii. Find the names of employees that are directly supervised by 'Franklin Wong'. iv. For each project, list the project name and the total hours per week (by all employees) spent on that project. v. Retrieve the names of all employees who work on every project controlled by department 5. vi. Retrieve the names of all employees who do not work on any project. (f') Retrieve the names of all employees who do not work on any project. viii. For each department, retrieve the department name, and the average salary of employees working in that department. viii. Retrieve the average salary of all female employees. ix. Find the names and addresses of all employees who work on at least one project located in Houston but whose department has no location in Houston. x. List the last names of department managers who have no dependents. xi. Retrieve the names of all employees who work in the department that has the employee with the highest xii. salary among all employees. 	CO3

xiii xiv xv xvi	For each department that has more than 5 employees retrieve the dno and no. of its employees who are making more than 6,00,000 Find the sum of salaries of all employees of 'ACCOUNTS' department as well as the MAX(SAL), MIN(SAL),AVG(SAL) in this department	
cre dec em cor ref	quirement: A college consists of number of employees working in different departments. In this context, eate two tables' employee and department. Employee consists of columns empno, empname, basic, hra, da, ductions, gross, net, date-of-birth. The calculation of hra, da are as per the rules of the college. Initially only ipno, empname, basic have valid values. Other values are to be computed and updated later. Department intainsdeptno, deptname, and description columns. Deptno is the primary key in department table and ferential integrity constraint exists between employee and department tables. Perform the following terations on the database:	
i ii iii	using appropriate SQL command 3. Basic column should not be null.	
iv viiviii ix x xi xii xiii	When the employees called daily-wagers are to be added the constraint that salary should be greater than or equal to 5000 should be dropped. Display the information of the employees and departments with description of the fields. Display the average salary of all the departments. Display the average salary department wise. 9. Display the maximum salary of each department and also all departments put together. Commit the changes whenever required and rollback if necessary. Find the employees whose salary is between 5000 and 10000 but not exactly 7500. Find the employees whose name contains 'en'. 12.Create alias for columns and use them in queries. 13. List the employees according to ascending order of salary. 14. List the employees who are born on Feb 29.	CO3

	xvi. Find the departments where the salary of all the employees is less than 20000. xvii. Add the column dept_location in department table.	
	Understand & implement the Database Connectivity with Java/Python etc. programming language	CO3
26	Implementation and apply all the set theory operators, join and nested queries concept on Case study -1.	
	 i. Make a list of all project members for projects that involve an employee whose name is SCOTT either as a worker or as a manager of the department that controls the project. ii. To retrieve the Social Security numbers of all employees who either work in department 5 or directly supervise an employee who works in department 5. iii. To retrieve the SSN of all employee who work as a supervisor not a manager. iv. D To retrieve the SSN of all employee who work as a supervisor and also manage the department. v. We want to retrieve a list of names of each female employee's dependents vi. We want a list of all employee names as well as the name of the departments they manage if they happen to manage a department; if they do not manage one, we can indicate it with a NULL value. vii. Retrieve the names of employees who have no dependents. viii. List the names of all employees with two or more dependents. ix. List the names of managers who have at least one dependent. x. Retrieve the name of each employees who do not have supervisors. xi. Retrieve the name of each employee who has a dependent with the same first name and is the same sex as the employee. 	CO3
27	Create Desktop/Web application using the database connectivity.	CO3
28	Implementation of Array Function	CO4
29	Implementation of Array Operators	CO4
30	Implementation of Indexing, Views and sequence	CO4
31	i. Write a PL/SQL Program t3o Add Two Numbers	

	ii. Write PL/SQL Program for Fibonacci Series	CO4
	iii. Write PL/SQL Program to Find Greatest of Three Numbers	
32	Write a PI/SQL code block to calculate the area of a circle for a value of radius varying from 3 to 7. Store the radius and the corresponding values of calculated area in an empty table named Areas, consisting of two columns Radius and Area.	CO4
33	Write a PL/SQL code block that will accept an account number from the user, check if the users balance is less than the minimum balance, only then deduct Rs.100/- from the balance.	CO4
34	Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old values and new values:	CO4
35	Implementation of commit and rollback statement with amount transfer example.	CO4
36	Implementation array, indexing, transaction concept on Case study 1. i. Implementation of Array Functions & Operators ii. Implementation of Sequence -Creating Sequences -Modifying a Sequence Definition -Removing Sequences iii. Implementation of Views -Creating Simple and Complex Views -Modifying Views -Removing Views	CO4

	iv. Implementation of Indexes	
	iv. implementation of indexes	
	-Manual and Automatic Indexes	
	-Creating Indexes	
	- Removing Indexes	
37	i. Write a PL/SQL block to calculate the incentive of an employee whose ID is 110.	
	ii. Grant and revoke DCL command used on Employee table	
	-GRANT SELECT ON Employee TO emp_name;	
	-Granting multiple privileges on Employee table	
	-Granting all privileges on Employee table;	
	-Granting privilege to a role in Employee table	
	-Granting the WITH GRANT OPTION on Employee table.	
	-Revoke all the permission applied on Employee table.	CO5
	iii. Create the CUSTOMERS table having the following attributes:	
	- (ID, NAME, AGE, ADDRESS, SALARY)	
	- Insert ten records in customer table.	
	-In Customer table delete those records which have age = 25 and then COMMIT the changes in the database.	
	-In Customer table delete those records which have age = 30 and then Rollback the changes in the database.	
	- Create three savepoint for customer table in that the three deletions have taken place.	
	- Apply the savepoint 2 with rollback on customer table and display the table record.	

	- Apply the SET Transaction command.	
38	Study of Open Source NOSQL Database and installation of MongoDB	CO5
39	Create, drop, rename the database in MongoDB	CO5
40	Implementation the MongoDB Operators.	CO5
41	Implementation the CRUD Operation in MongoDB	CO5
42	Implementation of the MongoDB Shell commands	CO5
43	Implementation of MongoDB Cursor and their methods	CO5
44	Implementation of relation in MongoDB	CO5
45	Implementation of Aggregate in MongoDB	CO5
46	Deployment the data on different tools like HBASE, Riak and Cassandra	CO5
47	Implementation of all CRUD operation, Cursor and aggregate etc. on real world problem.	CO5
	Connect to MongoDB (by using mongo shell)	
	i. Create database with name (ems) - use ems;	
	ii. Create collection with following fields:	
	{"name", age", gender", "exp, subjects, "type"" qualification"},	
	iii. Insert the Ten documents into "faculty" collection (Use insertMany())	
	Write the following queries:	
	 i. Get the details of all the faculty. ii. Get the count of all faculty members. iii. Get all the faculty members whose qualification is "Ph.D". 	

•		
	iv. Get all the faculty members whose experience is between 8 to 12 years.v. Get all the faculty members who teach "MATHS" or "NETWORKING".	
	vi. Get all the faculty members who teach "MATHS" and whose age is more than 30 years and	
	qualification must be "Ph.D".	
	vii. Get all the faculty members who are working part-time or who teach "JAVA".	
	viii. Add the following new faculty members:	
	{"name":"Ankita ", "age":34,"gender":"F","exp":25, subjects: ["MATHS","DE"],"type":"Full Time", "qualification":"Ph.D"}	
	ix. Update the data of all faculty members by incrementing their age and exp by one year.	
	x. Update the faculty "Sivani" with the following data: update qualification to "Ph.D" and type to "Full Time".	
	xi. Update all faculty members who are teaching "DBMS" such that they should now also teach "Java Programming".	
	xii. Delete all faculty members whose age is more than 55 years.	
	xiii. Get only the name and qualification of all faculty members.	
	xiv. Get the name, qualification and exp of all faculty members and display the same in ascending order of	
	exp.	
	xv. Sort the faculty details by their age (descending order) and get the details of the first five faculty	
	members only.	
48	Implementation of case Study on different domain	CO1, CO2, CO3,
	i. E-commerce Platform	CO4, CO5
	ii. Inventory Management	
	iii. Railway System	
	iv. Hospital Data Management	
	v. Voice-based Transport Enquiry System	
	vi. SMS-based Remote Server Monitor system	
	vii. Banking System	
	viii. Al based	

	Textbooks	
Sr. No.	Book Details	
1.	Abraham Silberschatz, Henry F. Korth, and S. Sudarshan," Database Concepts", McGraw Hill ,7th Edition, 2020.	
2.	Elmasri, Navathe, "Fundamentals of Database Systems", Addision Wesley ,7th Edition, 2016.	
3	Ivan Bayross, "SQL, PL/SQL – The Programming Language of Oracle", BPB Publication 5 th Edition ,2023.	
4.	Dan Sullivan, "NoSQL for Mere Mortals", Addison-Wesley Professional ,1st edition. 2015.	
	Reference Books	
Sr. No.	Book Details	
1	Thomas Cannolly and Carolyn Begg, "Database Systems: A Practical Approach to Design, Implementation and Management", Pearson Education, 3rd Edition, 2007.	
2	Raghu Ramakrishan and Johannes Gehrke "Database Management Systems", McGraw-Hill, 3rdEdition, 2014.	
3	NoSQL and SQL Data Modeling: Bringing Together Data, Semantics, and Software, Ted Hills, 1st Edition, 2016.	
4	Brad Dayley "NoSQL with MongoDB in 24 Hours", Sams Publisher, 1st Edition, 2014.	
	Links	

Unit-1	DBMS L1 Inauguration & Introduction (youtube.com)
	DBMS L2 Introduction to Relational Model (youtube.com)
	DBMS L3 Introduction to SQL (youtube.com)
	DBMS L8C Entity Relationship Model (youtube.com)
	DBMS L8D Entity Relationship Model (Problem Solving and Discussion) (youtube.com)
Unit-2	DBMS L4A Joins, Set Operations and Aggregate Functions (youtube.com)
	DBMS L9A Relational Database Design - YouTube
	DBMS L9B Relational Database Design (youtube.com)
	DBMS L9C Relational Database Design (youtube.com)
	DBMS L9D Discussion on Normalization (youtube.com)
	DBMS L14A Query Optimization (youtube.com)
	Relational Data Model and Notion of Keys - YouTube
	Introduction to Relational Algebra (youtube.com)
	Operators in Relational Model - YouTube
Unit-3	DBMS L4B Joins, Set Operations and Aggregate Functions (youtube.com)
	DBMS L5A Nested Subqueris (youtube.com)
	DBMS L6A Intermediate SQL (youtube.com)
	DBMS L7 Advanced SQL (youtube.com)
	DBMS L12A Indexing and Hashing (youtube.com)
Unit-4	DBMS L15 Transactions - YouTube
L	

	DBMS L16A Concurrency Control - YouTube
	DBMS L16B Concurrency Control (youtube.com)
	DBMS L16C Concurrency Control (youtube.com)
	DBMS L17A Recovery System - YouTube
Unit-5	DBMS L10A Application Design and Development - YouTube
	DBMS L10B Application Design and Development (youtube.com)
	DBMS L19 Distributed Data Stores and NoSQL Databases (youtube.com)
	DBMS L18B Map Reduce and Hadoop - YouTube
	NoSQL Databases #1 (Data Models, CAP Theorem, BASE Property) - YouTube
	https://youtu.be/ekuQjQUnj20?si=_aL4T12EkHBZsvEK

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject N	ame: Data Structures and Algorithms -II Lab	-P [0-0-4]
Subject C	ode: BCSE0451 Applicable in Department: CSE/IT/CS/AI/AI	ML/IOT/DS/CYS
Pre-requi	site of Subject: C, Python	
	Lab Experiments	
Course O	bjective: Learn to implement non-linear data structures.	
	Course Outcomes (CO)	
Course O	utcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO1	Implementation of tree data structures for basic operations like insertion, deletion, searching and traversal	K3
CO2	Implementation of algorithms based on graph data structures for solving real world problems.	К3
CO3	Implementing Dynamic Programming, Backtracking, Branch and Bound algorithms to solve complex data efficiently and effectively.	К3
	List of Practicals	
Sr. No.	Program Title	СО

		Mapping
1	Write a program to implement an in-order traversal of a binary tree and print the nodes.	CO1
2	Write a program to implement a pre-order traversal of a binary tree and print the nodes.	CO1
3	Write a program to implement a post-order traversal of a binary tree and print the nodes.	CO1
4	Write a program to count number of nodes in a binary tree	CO1
5	Write a program to find the height of the tree	CO1
6	Write a program to check if the Binary tree is balanced or not.	CO1
7	Write a Program to search a number in Binary Search Tree (BST)	CO1
8	Write a program to insert a node in a Binary Search Tree (BST).	CO1
9	Write a program to delete a node from a Binary Search Tree (BST).	CO1
10	Write a program to implement a max-heap and perform heap sort on an array of integers.	CO1
11	Write a Program to implement human coding algorithm	CO1
12	Write a program to implement priority queue using max heap.	CO1
13	Write a program to create a graph using an adjacency matrix.	CO2
14	Write a program to create a graph using an adjacency list.	CO2
15	Write a program to perform Depth-First Search (DFS) on a graph.	CO2
16	Write a program to perform Breadth-First Search (BFS) on a graph.	CO2
17	Write a program to check if there is a path between two nodes in a graph using DFS.	CO2
18	Write a program to find all the vertices reachable from a given vertex in a graph using BFS.	CO2
19	Write a program to detect a cycle in an undirected graph using DFS.	CO2
20	Write a program to detect a cycle in a directed graph using DFS.	CO2
21	Write a program to find the degree of each vertex in an undirected graph.	CO2

22	Write a program to count the number of connected components in an undirected graph.	CO2
23	Write a program to implement Dijkstra Algorithm.	CO2
24	Write a program to implement Prims Algorithm.	CO2
25	Write a program to implement Kruskal Algorithm.	CO2
26	Write a program to implement Floyd Warshall's all pair shortest path algorithm.	CO3
27	Write a program to implement Bellman ford Algorithm.	CO3
28	Write a program to implement Longest common subsequence (LCS).	CO3
29	Write a program to implement sum of subset problem using backtracking.	CO3
30	Write a program to implement insertion and search operations in a Tree.	CO3

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Operating Systems Lab

L-T-P [0-0-4]

Subject Code: BCSE0453 Applicable in Department: CSE/IT/CS/AI/AIML/DS/CYS/IOT

Pre-requisite of Subject: Basic knowledge of computer fundamentals, C programming, Data structure and Computer organization.

Lab Experiments

Course Objective: 1. This course gives an ability to Hands-on and practical experience with usage of the Linux OS and basics of Shell Programming.

2. The OS Lab aims to provide an experience to implement and analyze algorithms related to process management, CPU scheduling, memory management, file systems, and concurrency control and simulate modern operating systems.

Course Outcomes (CO)

Course ou	tcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)
CO1	Execute the Linux file system using basic shell commands.	К3
CO2	Implement CPU Scheduling Algorithms, Process Synchronization and deadlock handling techniques.	К3
CO3	Simulate memory allocation concepts, as well as distributed and virtual machine configurations, on modern operating systems.	К3

	List of Practical's	
Sr. No.	Program Title	CO Mapping
	Variables and Control Structures:	CO1
1	Write a shell script to determine the Area and Perimeter of a Rectangle.	CO1
2	Write a shell script to count the words, characters, and lines in the file.	CO1
3	Write a shell script that calculates the sum and average of an array of numbers	CO1
4	Write a shell script to calculate the Fibonacci sequence.	CO1
5	Write a shell script that finds prime numbers inside a user-specified range.	CO1
6	Write a shell script to determine whether a given string is palindrome.	CO1
	File Manipulation:	
7	Write shell script that allows users to create, delete, and list files in a directory.	CO1
8	Write a shell script that Count Lines in Each File in a Directory.	CO1
9	Write a shell script that find and Replace Text in Files.	CO1
10	Write a shell script that find Files Modified in the Last N Days.	CO1
	Directory Navigation:	
11	Write a shell script to list contents of a directory.	CO1
12	Write a shell script to change directory (cd) based on user input.	CO1
13	Write a shell script to navigate to the directory that contains a specific file.	CO1
	Process Management:	
14	Write a shell Script to display running processes and their details.	CO1

15	Write a shell Script to kill processes based on name or ID.	CO1
16	Write a shell Script to automatically Restart a Process if it Crashes	CO1
	User/Group Management:	
17	Write a shell Script to create, modify, and delete user accounts.	CO1
18	Write a shell Script to add or remove users from groups.	CO1
	Toolkit of Shell Scripts Demonstrating Shell Scripting of Functions:	
19	Write a shell script to file Backup Script with Custom Retention Policy	CO1
20	Write a shell script for database Backup and Restore Script.	CO1
21	Write a shell script for Network Configuration Script with Error Handling	
	Intercepting System Calls Using Dynamic Tracing Tools:	CO1
22	Write a shell Script to intercept system calls using strace and log process ID, system call name, arguments, and return	CO1
	values.	
23	Write a shell Script to intercept library calls using Itrace and capture similar information.	CO1
24	Write a shell script to monitor process forks using "ps"	CO1
	Collecting and Analyzing Network Statistics:	
25	Write a shell script to collect packet counts using tools like tcpdump or tshark.	CO1
26	Write a shell script to measure bandwidth usage using iftop or nload.	CO1
27	Write a shell script to analyze latency using ping or traceroute.	CO1
28	Write a shell script to check connection status using netstat or ss.	CO1
29	Write a shell script to visualize network data using gnuplot or matplotlib for graphs and charts.	CO1
	Miscellaneous Commands:	
30	Print Current Date and Time: Write a shell script to Display the current date and time using date command.	CO1

31	Generate Random Password: Write a shell script to Use openssl rand to generate a random password.	CO1
	View System Information:	CO1
32	Write a shell script to show system information like kernel version, CPU info, etc., using uname, Iscpu, etc.	CO1
33	Display System Uptime: Write a shell script to show system uptime using uptime command.	CO1
34	View Disk Usage: Write a shell script to Display disk space usage of files and directories using du and df commands.	CO1
35	Check System Load: Write a shell script to monitor system load averages using w or top commands.	CO1
36	Display Calendar: Write a shell script to show the calendar for a specific month using cal.	CO1
37	Search Text in Files: Write a shell script to Use grep to search for specific text within files.	CO1
38	Count Lines in a File: Write a shell script to Use wc -I to count the number of lines in a file.	CO1
39	Check System Users: Write a shell script to Display currently logged-in users using who or w commands.	CO1
40	Implement FCFS CPU Scheduling algorithm.	CO2
41	Implement the given CPU Scheduling algorithm a) SJF b) Priority Based	CO2
42	Implement Multi-level Queue CPU Scheduling algorithm.	CO2
43	Implement PRIORITY CPU Scheduling Algorithm (For both Pre-emptive and non-pre-emptive).	CO2
44	Implement Round-Robin CPU Scheduling Algorithm	CO2
45	Implement Multilevel Queue CPU Scheduling Algorithm.	CO2
46	Execute the RACE Condition of Process Synchronization.	CO2
47	Implement the Producer–consumer problem using semaphores.	CO2
48	Design a code and implement the Dinning Philosopher problem	CO2
49	Execute an algorithm for deadlock detection.	CO2
50	Implement Banker's algorithm of Deadlock Avoidance	CO2
51	Implement Contiguous memory fixed size partition scheme.	CO3

52	Implement Contiguous memory variable size partition scheme.	CO3
53	Simulate the First-Fit contiguous memory allocation technique.	CO3
54	Simulate the Best-Fit contiguous memory allocation technique.	CO3
55	Simulate the Worst-Fit contiguous memory allocation technique.	CO3
56	Implement the Non-contiguous	CO3
57	Memory Allocation by using Paging.	CO3
58	Write a Program to simulate the FIFO page replacement algorithm.	CO3
59	Write a Program to simulate the LRU page replacement Algorithm.	CO3
60	Write a Program to simulate the Optimal page replacement Algorithm.	CO3
61	Write a program to simulate FCFS Disk Scheduling Algorithm	CO3
62	Program to simulate the SSTF Disk Scheduling Algorithm	CO3
63	Connects to VMware vCenter and lists all virtual machines along with their power state.	CO3
64	Creates a new virtual machine with specified configurations in Azure.	CO3
65	Demonstrate how to set up and deploy a simple distributed function using Azure Functions. The function should be	CO3
	able to handle HTTP requests and run in a distributed manner across Azure's infrastructure.	
66	Write a shell script for the mount command, which is used to attach file systems to the file system hierarchy at a	CO1
	mount point.	
67	Write a shell script for the umount command, which is used to detach a mounted file system.	CO1
68	Write a shell script for Automate backups using cron with the tar command.	CO1
	Variables and Control Structures:	CO1
69	Write a shell script to determine the Area and Perimeter of a Rectangle.	CO1
70	Write a shell script to count the words, characters, and lines in the file.	CO1

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Technical Communication Lab L-T-P [0-0-2]

Subject Code: BASL0451 Applicable in Department: All Branches

Pre-requisite of Subject: B2 (CEFR level) in the Core Skills test; B1/B2 in the Speaking and Writing tests

Lab Experiments

Course Objective: To develop communication and critical thinking skills necessary for succeeding in the diverse and ever-changing workplace of the twenty first century and help the students communicate effectively, creatively, accurately, and appropriately.

Course Outcomes (CO)

Course o	Bloom's Knowledge Level (KL)	
CO 1	Comprehend the principles and functions of technical communication.	K2
CO2	Write for a specific audience and purpose to fulfil the provided brief.	K5
CO3	Identify and produce different kinds of technical documents.	K2, K3
CO4	Apply effective speaking skills to efficiently carry out official discourses.	К3
CO5	Demonstrate understanding of communication through digital media.	K5

	List of Practical				
Sr. No.	Program Title	CO Mapping			
1	Case Study Analysis: The students will be able to develop their critical thinking and analytical skills.	CO1			
2	Email Role Reversal: Writing and responding to emails in peer groups- The students will practice writing and responding to professional emails.	CO2			
3	Infographics – Data Analysis and Interpretation Task: The students will develop their ability to decipher important information from charts, graphs, tables, and diagrams.	CO3			
4	Document Redesign Challenge: Redesigning existing technical documents to improve readability - The students will develop their ability to write and edit professional documents.	CO3			
5	Abstract Formulation and Referencing: The students will be able to write research papers with proper source citations.	CO3			
6	Case Study presentations: The students will improve their analytical skills and by presenting improve their speaking skills.	CO4			
7	Presentation on Project Report: The students will develop professional speaking skills.	CO4			
8	Ted talk simulation – summarising a Ted Talk: The students improve their ability to condense speeches.	CO4			
9	Mock Interviews: The students will practice and enhance their interview skills.	CO4			
10	Webinar Presentations/Online Interviews: The students will improve their ability to make presentations in professional scenarios and perform well in online interviews.	CO5			

(An Autonomous Institute)
School of Computer Science & Information Technology

Subject Name: Environmental Science L-T-P [2-0-0]

Subject Code: BNC0402 Applicable in Department: All Branches

Pre-requisite of Subject: Basic knowledge of nature.

Course Objective: People working in industries or elsewhere essentially require the knowledge of environmental science to enable them to work and produce the most efficient, economical and eco-friendly finished products.

To help the students in realizing the inter-relationship between man and environment and help the students in acquiring basic knowledge about environment and develop the capability of using skills to fulfil the required aims, to realize and solve environmental problems through social, political, cultural and educational processes.

Course Outcomes (CO)

Course outo	come: After completion of this course students will be able to:	Bloom's
		Knowledge
		Level(KL)
CO 1	Understand the basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem, food chains and food webs. Ecological pyramids	K1
CO2	Understand the different types of natural recourses like food, forest, Minerals and energy and their conservation	K2
CO3	Understand the importance of biodiversity, Threats of biodiversity and different methods of biodiversity conservation.	K2
CO4	Understand the different types of pollution, pollutants, their sources, effects and their control methods.	K2

CO5	Understand thacts related to	e basic concepts of sustainable development, Environmental Ir environment	npact Assess	ment (EIA)	and different	K2
		Syllabus				
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1 Basic Principle of Ecology		ecosystem. Food chains and food webs. Ecological pyramids,	Smart board, PPTS, Reference book and Text book	4	NA	CO1
2 Natural Resources and Associated Problems	and Associated Problems	mining, dams and their effects on forest and tribal people. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. Food resources:	Reference book and Text book	4	NA	CO2

Biodiversity Succession and Non-	Module 3.1: Biodiversity Succession and Non- Renewable Energy Resources	Biodiversity and their importance, Threats to biodiversity, major causes, extinction's, vulnerability of species to extinction, IUCN threat categories, Red data book. Strategies for biodiversity conservation, principles of biodiversity conservation in-situ and ex-situ conservation strategies Mega diversity zones and Hot spots, concepts, distribution and importance. Succession: Concepts of succession, Types of Succession. Trends in succession. Climax and stability.	Smart board, PPTS, Reference book and Text book	4	NA	CO3
Solid Waste	Module 4.1: Pollution and Solid Waste Management	Air pollution: sources of air pollution, Primary and secondary air pollutants. Origin and effects of SOX, NOX, Cox,CFC, Hydrocarbon, control of air pollution. Water pollution: sources and types of water pollution, Effects of water pollution, Eutrophication, Soil pollution: Causes of soil pollution, Effects of soil pollution, Major sources of and effects of noise pollution on health, Radioactive and thermal pollution sources and their effects on surrounding environment. Solid waste disposal and its effects on surrounding environment, Climate change, global warming, acid rain, ozone layer depletion.	Smart board, PPTS, Reference book and Text book	4	NA	CO4
5 Role of Community and Environmental Protection Acts		Role of community, women and NGOs in environmental protection, Bio indicators and their role, Natural hazards, Chemical accidents and disasters risk management, Environmental Impact Assessment (EIA), Salient features of following Acts: a. Environmental Protection Act, 1986, Wildlife (Protection) Act, 1972.b. Water (Prevention and control of pollution) Act, 1974.c. Air (Prevention and control of pollution) Act, 1981. Forest (Conservation) Act, 1980.d. Wetlands (Conservation and Management) Rules, 2017; e.	Smart board, PPTS, Reference book and Text book	4	NA	CO5

Chemical safety and Disaster Management law. f. District Environmental Action Plan. Climate action plans.		
Total	20 Hours	

	Textbooks
Sr. No.	Book Details
1	Brady, N.C. 1990. The nature and properties of Soils, Tenth Edition. Mac Millan Publishing Co., New York.
2	Botkin, D.B and Kodler E.A., 2000, Environmental Studies: The earth as a living planet. John Wiley and Sons Inc.
3	Rao M.N. and H.V.N. Rao, 1989: Air Pollution, Tata McGraw Hill Publishing Co. Ltd., New Delhi
4	Singh J.S., Singh S.P. and Gupta S.R., 2006, Ecology Environment and Resource Conservation, Anamaya Publishers, New Delhi.
5	Environmental Studies -Benny Joseph-Tata McgrawHill-2005
6	Environmental Studies- Dr. D.L. Manjunath, Pearson Education-2006.
7	Environmental studies- R, Rajagopalan -Oxford Pubtiotion2005.
	Reference Books

Sr. No.	Book Details
1	Sodhi G.S. 2005, Fundamentals of Environmental Chemistry: Narosa Publishing House, New Delhi.2.Dash, M.C. (1994)
2	Fundamentals of Ecology, Tata Mc Graw Hill, New Delhi.
3	Sharma P. D. (1996). Environmental Biology, Rastogi Publications, Meerut.
4	Verma P.S. and V.K. Agarwal. (1985). Principles of Ecology. S. Chand and Company (Pub.), New Delhi.
5	Principles of Environmental Sciences and Engineering -P. Venugoplan Rao, Prenitice Hall of India.
6	Environmental Science and Engineering Meenakshi, Prentice Hall India.
	Links
Unit 1	https://www.youtube.com/watch?v=T21OO0sBBfc, https://www.youtube.com/watch?v=qt8AMjKKPDo https://www.youtube.com/watch?v=yAKm91Nxrs https://www.youtube.com/watch?v=ha_O-1uOWkk https://www.youtube.com/watch?v=brFORWJyx9w
Unit 2	https://www.youtube.com/watch?v=mOwyPENHhbc, https://www.youtube.com/watch?v=yqev1G2iy20, https://www.youtube.com/watch?v=_74S3z3IO_I, https://www.youtube.com/watch?v=jXVw6M6m2g0
Unit 3	https://www.youtube.com/watch?v=GK_vRtHJZu4, https://www.youtube.com/watch?v=b6Ua_zWDH6U, https://www.youtube.com/watch?v=7tgNamjTRkk, https://www.youtube.com/watch?v=ErATB1aMiSU, https://www.khanacademy.org/science/high-school-biology/hs-ecology/hs-human-impact-on-ecosystems/v/ https://www.youtube.com/watch?v=7qkaz8Chell,

Unit 4	https://www.youtube.com/watch?v=NuQE5fKmfME,
	https://www.youtube.com/watch?v=9CpAjOVLHII,
	https://www.youtube.com/watch?v=yEci6iDkXYw,
	https://www.youtube.com/watch?v=yEci6iDkXYw
	https://www.youtube.com/watch?v=ad9KhgGw5iA,
Unit 5	https://www.youtube.com/watch?v=nW5g83NSH9M,
	https://www.youtube.com/watch?v=xqSZL4Ka8xo,
	https://www.youtube.com/watch?v=WAI-hPRoBqs,
	https://www.youtube.com/watch?v=o-WpeyGIV9Y,
	https://www.youtube.com/watch?v=EDmtawhADnY