	Subject Code: N PGDM023														
Printed page:	Roll No:														_

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, (NIET BUSINESS SCHOOL) GREATER NOIDA PGDM (Standard)

TRIMESTER-IITHEORY EXAMINATION (2024-2025) (COP)

Subject ...-Quantitative technique for business decision

Time: 2Hrs.30 min Max. Marks:60

General Instructions:

IMP: Verify that you have received question paper with correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Short type questions & Subjective type questions.
- 2. Maximum marks for each question are indicated on right hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.
- 6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

	SECTION – A	15
1. At	tempt <u>all</u> parts:-	
1-a.	Define Operation research. (CO1,K2)	1
1-b.	Define surplus variables. (CO2,K2)	1
1-c.	Define unbalanced Transportation problems. (CO3,K4)	1
1-d.	Define Assignment problems. (CO4,K4)	1
1-e.	Explain Sequencing problems. (CO5,K4)	1
2. At	tempt <u>all</u> parts:-	
2.a.	Define a model. (CO1,K2)	2
2.b.	Define LPP. (CO2,K2)	2
2.c.	Give the necessary and sufficient condition for existence of a	2
	feasible solution of a Transportation problems . (CO3,K4)	
2.d.	Write the principle of dominance in game. (CO4,K4)	2
2.e	Discuss Johnson's method.(CO5,K4)	2
	SECTION – B	15
3. Ar	nswer any <u>three</u> of the following-	
3-a.	Give difference between deterministic and probabilistic	5
	models of O.R.(CO1,K2)	
3-b.	Write the steps for mathematical formulation of a Linear	5
	Programming Problems. (CO2,K2)	

Subject Code: N PGDM023

3-c. Find initial basic feasible solution of following Transportation Problem by North west corner rule.

	A	В	C	Supply
I	2	7	4	5
II	3	3	1	8
III	5	4	7	7
IV	1	6	2	14
Demand	7	9	18	

(CO3,K4)

3-d. Solve the game for the following pay of matrix:

5

5

Player B

player
$$A\begin{bmatrix} -5 & 2 \\ -7 & -4 \end{bmatrix}$$
 (CO4,K4)

3-e. There are six jobs each of which must go through the two 5 machines A and B in the order AB. Determine the sequence of jobs that will minimize the total elapsed time.

Job	1	2	3	4	5	6
Machine I	5	9	4	7	8	6
Machine II	7	4	8	3	9	5

(CO5,K4)

SECTION - C

30

Case Let & Application Based

4. Answer any **one** of the following-

4-a. Discuss historical development and scopes of O.R. (CO1,K2) 6

4-b. Give the advantages and limitations of O.R, (CO1,K2) 6

5. Answer any **one** of the following-

6

5-a. Give the working rule of Simplex method. (CO2,K2)

6

6

5-b. Solve by Graphical method given LPP:

Max. Z = 100x + 300y

s.t.
$$x+2y \le 32$$

 $x+y \le 24$
 $x,y \ge 0 \text{ (CO2,K2)}$

6. Answer any one of the following-

Subject Code: N PGDM023

6-a. Discuss the working rule of MODI METHOD. (CO3,K4)

6

6-b. Determine the optimum basic feasible solution of following Transportation Problem

6

	D1	D2	D3	D4	a_{i}
O1	5	3	6	2	19
O2	4	7	9	1	37
O3	3	4	7	5	34
bj	16	18	31	25	

(CO3,K4)

- 7. Answer any **one** of the following-
- 7-a. Describe the Hungarian method for solving the Assignment problems. (CO4,K4)

6

7-b. Using the principle of dominance, solve the following game:

6

Player B

Player A
$$\begin{bmatrix} 3 & -2 & 4 \\ -1 & 4 & 2 \\ 2 & 2 & 6 \end{bmatrix}$$
 (CO4,K4)

8. Answer any one of the following-

6

8-a. Explain the method of processing of m jobs through three machines A,B,C in order ABC. (CO5,K4)

6

8-b. Write the component of CPM Network.(CO5,K4)