Page 1 of 3

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, (NIET BUSINESS SCHOOL) GREATER NOIDA

PGDM (Global)

TRIMESTER-IITHEORY EXAMINATION (2024-2025)(COP)

Subject - Quantitative technique for business Decisions.

Time: 2Hrs.30 min

Printed page: 04

General Instructions:

IMP: Verify that you have received question paper with correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Short type questions & Subjective type questions.
- 2. Maximum marks for each question are indicated on right hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.

1. Attempt all parts:-

- 5. Preferably, write the answers in sequential order.
- 6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

1-a.Define Operation research . (CO1,K2)11-b.Define Linear Programming Problems. (CO2,K2)11-c.Give the name of method in which, for find I.B.F.S. we start
from cell (1,1) Transportation problems . (CO3,K2)11-d.Define pure strategy in game. (CO4,K4)11-e.Define sequencing problem. (CO5,K4)12.Attempt all parts:-22.a.Give two characteristics of O.R. (CO1,K2)22.b.Define surplus variables and slack variables (CO2,K2)22.c.Write the different methods for find I.B.F.S. in
Transportation problems (CO3,K2)22.d.Solve the game for the following pay of matrix:
Player B
player A
$$\begin{bmatrix} -7 & 2 \\ -5 & -4 \end{bmatrix}$$
 (CO4,K4)22.eWrite the process Johnson's method. (CO5,K4)23. Answer any three of the following-15

 Subject Code: GPG023

 Roll No:

Max. Marks:60

5

5

- 3-a. Discuss the models of O.R. (CO1,K2)
- 3-b. Write dual of the following problem: Min. Z= $10x_1+20x_2$ s.t. $3x_1+2x_2 \ge 18$ $x_1+3x_2 \ge 8$

3-c. Find initial basic feasible solution of following Transportation 5Problem by VAM:

	А	В	С	Supply
Ι	2	7	4	5
II	3	3	1	8
III	5	4	7	7
IV	1	6	2	14
Demand	7	9	18	

(CO3,K2)

- 3-d. Write the working rule of Hungarian method for Assignment 5 problems. (CO4,K4)
- 3-e. Explain the method of processing of n jobs through two 5 Machines. (CO5,K4)

$$SECTION - C \qquad 30$$

Case Let & Application Based

- 4. Answer any <u>one</u> of the following-
- Discuss the Phases of O.R. (CO1,K2) 4-a. 6 Write applications of O.R. in different fields. (CO1,K2) 4-b. 6 5. Answer any one of the following-6 Write the basic requirement for Linear Programming 5-a. 6 Problems. (CO2,K2) Solve given LPP by Simplex method 5-b. 6 Max. $Z = 40x_1 + 35x_2$ $2x_1 + 3x_2 \le 60$ s.t. $4x_1 + 3x_2 < 96$

x₁, x₂≥0 (CO2,K2)

6. Answer any <u>one</u> of the following-

6

6

6-a. Find initial basic feasible solution of following Transportation 6Problem by : I) North west corner rule II) Lowest cost entry method : (CO3,K2)

	А	В	С	D	Supply
Ι	19	30	50	10	7
II	70	30	40	60	9
II	40	8	70	20	18
Demand	5	8	7	14	

- 6-b. Discuss the steps of optimal solution of Transportation 6 problems . (CO3,K2)
- 7. Answer any <u>one</u> of the following-
- 7-a. Find the optimal solution for the assignment problem with the 6 following cost matrix: (CO4,K4)

	Ι	II	III	IV
А	5	3	1	8
В	7	9	2	6
С	6	4	5	7
D	5	7	7	6

7-b. Obtain the optimum strategies for both the players and determine the value of game.

Player B
Player A
$$\begin{bmatrix} -5 & 3 & 1 & 20 \\ 5 & 5 & 4 & 6 \\ -4 & -2 & 0 & -5 \end{bmatrix}$$
 (CO4,K4)

- 8. Answer any <u>one</u> of the following-
- 8-a. Explain the method of processing of n jobs through three Machines (CO5,K4)
- 8-b. Determine the sequence of jobs that will minimize the total 6 elapsed time. And also calculate the total elapsed time. (CO4,K4)

Task	Ι	II	III	IV	V	VI	VII	VIII	IX
Machine I	4	10	8	18	12	16	14	10	8
Machine II	12	16	14	8	6	18	6	16	22