| Printed Page:- 04                                                                                  | Subject Code:- BMICSE0301                     |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                                    | Roll. No:                                     |
|                                                                                                    |                                               |
| NOIDA INSTITUTE OF ENGINEERING                                                                     |                                               |
| (An Autonomous Institute Af                                                                        | · · · · · · · · · · · · · · · · · · ·         |
| SEM: III - THEORY EXAM                                                                             | Tech(Integrated) MINATION (2024 - 2025)       |
| Subject: Data Structu                                                                              | · · · · · · · · · · · · · · · · · · ·         |
| Time: 3 Hours                                                                                      | Max. Marks: 100                               |
| General Instructions:                                                                              |                                               |
| IMP: Verify that you have received the question p                                                  | -                                             |
| 1. This Question paper comprises of three Section                                                  | ns -A, B, & C. It consists of Multiple Choice |
| Questions (MCQ's) & Subjective type questions.                                                     | . I                                           |
| 2. Maximum marks for each question are indicated 3. Illustrate your answers with neat sketches whe | · · · · · · · · · · · · · · · · · · ·         |
| 4. Assume suitable data if necessary.                                                              | rever necessary.                              |
| 5. Preferably, write the answers in sequential ord                                                 | ler.                                          |
| 6. No sheet should be left blank. Any written mate                                                 |                                               |
| evaluated/checked.                                                                                 |                                               |
|                                                                                                    |                                               |
| SECTION-A                                                                                          | 20                                            |
| 1. Attempt all parts:-                                                                             |                                               |
| 1-a. Which of the following is also known a                                                        | as "Big O" notation (CO1, K1)                 |
| (a) Time Complexity                                                                                |                                               |
| (b) Space Compelxity                                                                               |                                               |
| (c) Worst-Case Analysis                                                                            | ())                                           |
| (d) Asymptotic notation                                                                            |                                               |
|                                                                                                    | For implementing a LRU (Least Recently 1      |
| Used) cache? (CO1, K1)                                                                             | or imprementing a zero (zeast recond)         |
| (a) Array                                                                                          |                                               |
| (b) Stack                                                                                          |                                               |
| (c) Queue                                                                                          |                                               |
| (d) Hash Map and Doubly linked List                                                                |                                               |
| 1-c. In binary search, what is the time comp                                                       | olexity in the worst case? (CO2, K2)          |
| (a) $O(\log n)$                                                                                    |                                               |
| (b) $O(n)$                                                                                         |                                               |
| (c) $O(n \log n)$                                                                                  |                                               |
| $(d)$ $O(n^2)$                                                                                     |                                               |
|                                                                                                    | g an element in a 2-D array with 4 rows and 1 |
| (a) $(i\times 5+j)$                                                                                |                                               |

|        | (b)     | $(i\times 4+j)$                                                                                                                        |   |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------|---|
|        | (c)     | $(i\times j+5)$                                                                                                                        |   |
|        | (d)     | $(i+j\times4)$                                                                                                                         |   |
| 1-e.   | T       | he main advantage of linked lists over arrays is: (CO3, K1)                                                                            | 1 |
|        | (a)     | Faster traversal                                                                                                                       |   |
|        | (b)     | Dynamic memory allocation                                                                                                              |   |
|        | (c)     | Compact memory usage                                                                                                                   |   |
|        | (d)     | Random access                                                                                                                          |   |
| 1-f.   | A       | rrays require contiguous memory allocation, whereas linked lists: (CO3,K1)                                                             | 1 |
|        | (a)     | Require larger memory space                                                                                                            |   |
|        | (b)     | Require fragmented memory allocation                                                                                                   |   |
|        | (c)     | Require contiguous memory allocation                                                                                                   |   |
|        | (d)     | Do not require memory                                                                                                                  |   |
| 1-g.   | E       | valuate the time complexity of a push() operation in a stack. (CO4,K1)                                                                 | 1 |
|        | (a)     | O(1)                                                                                                                                   |   |
|        | (b)     | O(n)                                                                                                                                   |   |
|        | (c)     | $O(\log n)$                                                                                                                            |   |
|        | (d)     | $O(n^2)$                                                                                                                               |   |
| 1-h.   |         | analyze the condition indicating stack overflow when implemented using an erray. (CO4, K1)                                             | 1 |
|        | (a)     | top == maxSize                                                                                                                         |   |
|        | (b)     | top == maxSize - 1                                                                                                                     |   |
|        | (c)     | top == 0                                                                                                                               |   |
|        | (d)     | top == -1                                                                                                                              |   |
| 1-i.   | ` /     | Which of the following algorithms is NOT a Divide and Conquer algorithm?                                                               | 1 |
|        |         | CO5, K1)                                                                                                                               |   |
|        | (a)     | Merge Sort                                                                                                                             |   |
|        | (b)     | Quick Sort                                                                                                                             |   |
|        | (c)     | Bubble Sort                                                                                                                            |   |
|        | (d)     | Binary Search                                                                                                                          |   |
| 1-j.   | W       | What is the worst-case time complexity of Quick Sort? (CO5, K1)                                                                        | 1 |
|        | (a)     | O(n)                                                                                                                                   |   |
|        | (b)     | $O(n \log n)$                                                                                                                          |   |
|        | (c)     | $O(n^2)$                                                                                                                               |   |
|        | (d)     | $O(\log n)$                                                                                                                            |   |
| 2. Atı | tempt a | all parts:-                                                                                                                            |   |
| 2.a.   | L       | et $f(n)$ and $g(n)$ be asymptotically non-negative functions. Using the definition $f(n) = \Theta(f(n) + g(n)) = \Theta(f(n) + g(n))$ | 2 |

| 2.b.          | Consider array A[6][8], stored in column-major order. Find the address of element A[3][5]. Base address is 2000 and element size is 4 bytes. (CO2,K3)                                                          | 2  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.c.          | Mention any two advantages of linked list over arrays. (CO3,K1)                                                                                                                                                | 2  |
| 2.d.          | Mention the Underflow and Overflow condition in a Circular Queue. (CO4,K2)                                                                                                                                     | 2  |
| 2.e.          | Differentiate between Divide and Conquer and Greedy Approach of an algorithm. (CO5,K1)                                                                                                                         | 2  |
| <b>SECTIO</b> | <u> </u>                                                                                                                                                                                                       | 30 |
| 3. Answe      | er any <u>five</u> of the following:-                                                                                                                                                                          |    |
| 3-a.          | Elaborate the term "Analysis of Algorithm". In the context of analysis of algorithm explain the different types of complexities occurred with the help of proper graphs. (CO1,K1)                              | 6  |
| 3-b.          | Solve the following recurrence relation using Master Method: $T(n)=\sqrt{2T(n/2)}+\log n$ . (CO1,K3)                                                                                                           | 6  |
| 3-c.          | Consider the following data: [1,4,7,9,13,17,19]. Perform binary search on the above data and give the algorithm/Program to give the index of element '4' in the array. (CO2,K1)                                | 6  |
| 3-d.          | Write an algorithm/Program to represent the sparse matrix as an Array. (CO2,K2)                                                                                                                                | 6  |
| 3.e.          | Write an algorithm/Program to insert and delete a node at a given position in a doubly linked list. (CO3,K1)                                                                                                   | 6  |
| 3.f.          | Write a recursive algorithm/Program to generate the Fibonacci series of 5 integers. Also, show diagrammatically the activation record using stack. (CO4,K3)                                                    | 6  |
| 3.g.          | Briefly elaborate the "Divide and Conquer" method to solve a problem. Write an algorithm to solve the convex hull with the help of an example. (CO5,K1)                                                        | 6  |
| <b>SECTIO</b> | <u>N-C</u>                                                                                                                                                                                                     | 50 |
| 4. Answe      | er any <u>one</u> of the following:-                                                                                                                                                                           |    |
| 4-a.          | Solve the recurrence relation using Recursion-Tree method. (CO1, K3) $T(n) = T(\frac{n}{4}) + T(\frac{n}{2}) + n^2$                                                                                            | 10 |
| 4-b.          | Solve the recurrence relation using Recursion-Tree method. (CO1,K3)                                                                                                                                            | 10 |
|               | $T(n) = T(\frac{n}{2}) + T(\frac{2n}{3}) + n^2$                                                                                                                                                                |    |
| 5. Answe      | er any <u>one</u> of the following:-                                                                                                                                                                           |    |
| 5-a.          | Apply counting sort on the given array $A=[1,3,2,3,4,1,6,4,3]$ . Give an appropriate algorithm for the same problem and also do time and space complexities analysis for the algorithm you will give. (CO2,K3) | 10 |
| 5-b.          | Write a Program to insert and delete an element at a given position in an Array. (CO2,K2)                                                                                                                      | 10 |
| 6. Answe      | er any <u>one</u> of the following:-                                                                                                                                                                           |    |
| 6-a.          | How to represent the polynomial using linked list? Write an algorithm/Program to add two polynomials using linked list. (CO3,K2)                                                                               | 10 |

- 6-b. Discuss Doubly Linked List. Write an algorithm/Program to reverse a single linked list. (CO3,K2)
- 7. Answer any one of the following:-
- 7-a. Briefly explain the Recursion and its types with help of an example. State Tower of Hanoi Problem and write a Program using Recursion. (CO4,K1)
- 7-b. Convert the given Infix expression into Prefix expression using stack implementation: (CO4,K2)

$$((H*(((A+((B+C)*D))*F)*G)*E))+J)$$

- 8. Answer any one of the following:-
- 8-a. Pen down the algorithm to implement the Quick Sort. Perform the Quick sort on the following data: [23,11,5,15,68,31,4,17]. Also explain how partitioning work in quick sort. (CO5, K2)
- 8-b. Discuss the Knapsack Problem. Solve Fractional Knapsack Problem using greedy programming and generate the maximum profit for the following four items with their weight w={3,5,95} and Profit P={45,30,45,10} with knapsack capacity is 16. (CO5,K3)

