Printe	d Page	•
		Roll. No:
N	MOID	A INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
		(An Autonomous Institute Affiliated to AKTU, Lucknow)
		B.Tech
		SEM: III - THEORY EXAMINATION (2024 2025) Subject: Signals, systems and networks
Tim	e: 3 H	· · · · · · · · · · · · · · · · · · ·
		tructions:
IMP:	Verify	that you have received the question paper with the correct course, code, branch etc.
1. This	s Que	stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice
_		MCQ's) & Subjective type questions.
		n marks for each question are indicated on right -hand side of each question.
		your answers with neat sketches wherever necessary.
		uitable data if necessary. ly, write the answers in sequential order.
-		should be left blank. Any written material after a blank sheet will not be
		hecked.
SECT	ION-	-A 20
		all parts:-
1-a.	_	he time period for any signal x(t)=2cost+3cos 2t is given by 1
		CO1,K3)
	(a)	1
	(b)	2
	(c)	2π
	(d)	Not periodic
1-b.	(u)	signals are having finite and non zero Energy.(CO1,K1) 1
1-0.	(a)	
	(a)	Power Signal
	(b)	Energy Signal
	(c)	Non-Periodic Signal
	(d)	none of the above
1-c.	Fo	ourier series of any periodic signal x(t) can only be obtained if (CO2,K1)
	(a)	$\int_{0}^{T} x(t) dt < \infty$
	(b)	finite number of discontinuities within finite time interval T
	(c)	both of the above are true
	(d)	infinite number of discontinuities
1 4	` ′	
1-d.		Which of the following is correct? A system can be completely described by a ansfer function if it is (CO2,K1)

	(a)	non-linear and continuous		
	(b)	Linear and time invariant		
	(c)	linear and time-varying		
	(d)	non-linear and time-invariant		
1-e.	T	he Laplace transform of the signal $x(t) = d\delta(t)/dt$. (CO3,K3)	1	
	(a)	1		
	(b)	S		
	(c)	1/s		
	(d)	2/s		
1-f.	Τ	Time domain function of $s / (a^2 + s^2)$ is given by (CO3,K3)	1	
	(a)	Cos(at)		
	(b)	Sin(at)		
	(c)	Cos(at)Sin(at)		
	(d)	Sin(t)		
1-g.		Vith respect to transmission parameters, which one of the following is orrect? (CO4,K1)	1	
	(a)	A and B are dimensionless		
	(b)	B and C are dimensionless		
	(c)	A and D are dimensionless		
	(d)	B and D are dimensionless		
1-h.	In two-port networks the parameter g21 is called (CO4,K1)			
	(a)	Short circuit input impedance		
	(b)	Short circuit current ratio		
	(c)	Open circuit voltage ratio		
	(d)	Open circuit input admittance		
1-i.		onsider the impedance function $Z(s)=3(s+2)(s+4)/(s+1)(s+3)$. Find the value of 2 after realizing by first Foster method. (CO5,K3)	1	
	(a)	1		
	(b)	1/2		
	(c)	1/4		
	(d)	1/8		
1-j.	ex	the ratio of the polynomial P (s) and its derivative gives a continued fraction spansion with coefficients, then the polynomial P (s) is Hurwitz.	1	
	(a)	all negative		
	(b)	all positive		
	(c)	positive or negative		
	(b)	positive and negative		

2. Atte	mpt all parts:-	
2.a.	Define following terms: (CO1,K1) (a) Unit ramp (b) Unit step (c) Unit impulse	2
2.b.	Determine whether the system is causal and stable. Justify your answers. (CO2,K2) $h(t) = e-6l \ t \ l$	2
2.c.	What is the use of laplace transform? (CO3,K1)	2
2.d.	Define the symmetricity conditions for two port network. (CO4,K1)	2
2.e.	Write down the properties of Hurwitz function also explain it with an example and prove it whether it is Hurwitz or not. (CO5,K1)	2
SECT	ION-B	30
3. Ans	wer any <u>five</u> of the following:-	
3-a.	Draw the graph of $u(t+2) - u(t-2) + r(t-3)$. (CO1,K2)	6
3-b.	Check whether the given continuous time systems is $y(t) = t x(t)$. (CO1,K1) (i) static or dynamic (ii) Linear or Non-linear (iii) Causal or non-causal	6
3-c.	Describe the properties of Fourier transform.(CO2,K2)	6
3-d.	Find out the fourier transform and spectrum of following signals: (CO2,K2) (i) $x(t) = \cos \omega_0 t$ (ii) $x(t) = \sin \omega_0 t$	6
3.e.	Solve the following differential equation: (CO3,K3) y''(t) + 5y'(t) + 6y(t) = 0 Let $y(0) = 1$ and $y'(0) = 2$.	6
3.f.	Evaluate V ₂ /V ₈ in the circuit in Figure (CO4,K3)	6

3.g. Check whether the following function is positive real function or not (CO5,K3) $Z(s) = \frac{(s+2)(s+4)}{(s+1)(s+3)}$

SECTION-C 50

4. Answer any one of the following:-

4-a. Plot the graph for following signals (CO1,K3)

(i) x(t) = u(t + 1/2) + (t+3)

(ii)Discrete signal x(n) = u(-n-1)

(iii) $y(t)=e^{-2t}u(t)$

(iv) $z(t)=e^{4t}u(t)$

 $(v) \ m(t) = u(-t+4)$

4-b. Find and draw the even and odd part of (CO1,K3)

1. u(t)

2. r(t)

3. $\sin(w_o t)u(t)$

4. $cos(w_o t)u(t)$

5. Answer any one of the following:-

5-a. Find the Fourier series of the square wave in Figure. Also plot the amplitude and phase spectra.(CO2,K3)

5-b. Find the inverse Fourier Transform of (CO2,K2) 10

10

- (i) $\delta(w)$
- ii) $\delta(w-w_0)$
- 6. Answer any <u>one</u> of the following:-

6-a. Calculate the Laplace transform of time domain signal (CO3,K 10

- (i) $y(t)=u(t-2)*\delta(t-2)$
- (ii) u(t + 2)

Obtain inverse Laplace transform of the following function: (CO3,K2) 6-b.

10

$$X(s) = (3s+7)/(s^2-2s-3)$$

for ROCs of (i) Re(s) > 3

(ii)
$$Re(s) < -1$$

(iii) $-1 < Re(s) < 3$.

- 7. Answer any one of the following:-
- 7-a. Two identical two-port networks having transmission matrix are cascaded. Derive 10 the overall Transmission Parameter Toverall for this cascade network.

Two port network with transmission matrices: (CO4,K2)

The port network with transmission matrices: (CO4, K2)
$$T1 = \begin{bmatrix} 1 & 2 \\ 0.1 & 4 \end{bmatrix} \text{ and } T2 = \begin{bmatrix} 2 & 4 \\ 0.5 & 3 \end{bmatrix} \text{ are connected in cascade. Calculate overall}$$
The portion of the posterior of this page of a network.

Transmission Parameter for this cascade network.

- 7-b. Explain the conversion of z-parameter in terms of y, h and T parameters.(CO4,K1) 10
- 8. Answer any one of the following:-

8-a. Find the first and second foster form of the function (CO5,K2)

$$Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$$

8-b. Explain the properties of positive real function. Also explain the necessary and sufficient conditions for positive real function with suitable example.(CO5,K1)

10

10

COP. JULY DEC. 2024