Printed	d Page		ubject Code:- BEC0201			
		R	oll. No:			
	IOID	A DIGITIZE OF ENGINEEDING AN				
N	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)					
		B.Tecl	·			
		SEM: II - THEORY EXAMINA				
		Subject: Basic Electrical and	Electronics Engineering			
	e: 3 H		Max. Marks: 100			
		tructions:				
			er with the correct course, code, branch etcA, B, & C. It consists of Multiple Choice			
		MCQ's) & Subjective type questions.	11, b, & c. Il consists of Humpie Choice			
_		n marks for each question are indicated	on right -hand side of each question.			
3. Illus	strate	your answers with neat sketches wherev	ver necessary.			
		uitable data if necessary.				
•		ly, write the answers in sequential order.				
		should be left blank. Any written materio hecked.	il after a blank sheet will not be			
evaina	ieu/ci	пескей.				
SECT	ION-	<u>-A</u>	20			
1. Atte	empt a	all parts:-				
1-a.	Tl	he internal voltage drop of a voltage sou	rce (CO1,K1)			
	(a)	Is independent of load current supplied				
	(b)	Depends upon internal resistance of the	e source			
	(c)	Does not influence the terminal voltage	a P			
	(d)	Does affect the emf of the source				
1-b.	A	linear circuit is one whose parameters (e.g.resistances etc.) (CO1,K2)			
	(a)	change with change in current				
	(b)	change with change in voltage				
	(c)	do not change with voltage and current	t			
	(d)	none of the above				
1-c.	A	sinusoidal voltage has peak to peak valu	ue of 100 V. The rms value is (CO2,K3)			
	(a)	50				
	(b)	70.7				
	(c)	35.35				
	(d)	141.41				
1-d.	Tl	he unit of apparent power is (CO2,K1)	1			
	(a)	KVA				
	(b)	KVAR				
	(c)	KW				

	(d)	Watt	
1-e.	A _	n ideal transformer will have maximum efficiency at a load such that(CO3,K2)	1
	(a)	copper loss > iron loss	
	(b)	cannot be determined	
	(c)	copper loss = iron loss	
	(d)	copper loss < iron loss	
1-f.		or a transformer with primary turns 100, secondary turns 400, if 200 V is applied a primary we will get(CO3,K3)	1
	(a)	3200 V at secondary	
	(b)	1600 V at secondary	
	(c)	800 V at secondary	
	(d)	80 V at secondary	
1-g.	A	n intrinsic semiconductor at absolute zero (CO4,K1)	1
	(a)	Becomes extrinsic semiconductor	
	(b)	Behaves like an insulator	
	(c)	Disintegrates into pieces	
	(d)	Becomes superconductor	
1-h.		semiconductor has temperature coefficient of resistance CO4,K2)	1
	(a)	Positive	
	(b)	Negative	
	(c)	Both may be possible	
	(d)	None of the above	
1-i.	W	That is the ideal voltage gain of an op-amp? (CO5,K1)	1
	(a)	0	
	(b)	1	
	(c)	∞	
	(d)	It varies depending on the op-amp model	
1-j.		n a non-inverting amplifier configuration, the voltage gain is determined y:(CO5,K2)	1
	(a)	The feedback resistor (Rf) alone	
	(b)	The input resistor (Rin) alone	
	(c)	Both the input resistor (Rin) and the feedback resistor (Rf)	
	(d)	The op-amp's power supply voltage	
2. Att	empt	all parts:-	
2.a.	D	efine unilateral and bilateral elements. (CO1,K2)	2
2.b.	D	befine form factor and Crest factor in A.C circuit (CO2,K2)	2

2.c.	In a transformer iron loss is 600 W at full load. These losses at half load will be (CO3)	2
2.d.	Calculate the rectification efficiency of Bridge rectifier. (CO4,K3)	
2.e.	Write down the Ideal characteristics of op-amp. (CO5,K2)	
SECTIO	ON-B	30
3. Answ	er any <u>five</u> of the following:-	
3-a.	Determine the current in all the branches using nodal analysis. (CO1,K3)	6
	$ \begin{array}{c c} & & \\$	
3-b.	Find the current in various branches of circuit. Using mesh Analysis. (CO1,K3)	6
3-c.	A coil of resistance $40~\Omega$ and inductance $0.75~H$ is connected in series with loss free capacitor of capacitance C. The resonance frequency of the circuit is $55~Hz$. If the circuit is connected from a $250~V$, $50~Hz$ AC supply then find power factor and power consumed in the circuit (CO2,K3)	6
3-d.	Derive the expression of Bandwidth of a series RLC circuit. Explain the relationship between bandwidth and quality factor. (CO2,K3)	6
3.e.	What is the working principle of Transformer? Why Transformer does not work on DC supply? (CO3,K2)	6
3.f.	Explain the following terms: (a) Potential Barrier (b) Knee Voltage (c) PIV (d) Reverse bias (CO4,K2)	6
3.g.	Draw the circuit diagram of inverting and non inverting amplifier and derive the expression for output voltage.(CO5,K3)	6
SECTIO	<u>ON-C</u>	50
4. Answ	er any <u>one</u> of the following:-	
4-a.	Derive the expression for Star to Delta transformation. (CO1,K3)	10
4-b.	State and prove maximum power transfer theorem. Enumerate limitations of Superposition theorem (CO1,K2)	10
5. Answ	er any <u>one</u> of the following:-	
5-a.	For an AC circuit expression of voltage and current are given as $v = 200$ Sin	10

	(377t) V and i = 8 Sin (377t – 30) respectively. Find:(a)Power Factor (b) True Power (c)Apparent Power (d)Reactive Power (CO2,K3)	
5-b.	Derive an expression for average and rms value of half wave rectified cycle .Also find the form factor and crest factor of the mentioned waveform (CO2,K2)	10
6. Answ	ver any one of the following:-	
6-a.	Discuss about thermal power plant and its site locations in India with their capacities. Also mention its advantages and disadvantages. (CO3,K2)	10
6-b.	The efficiency of a 400 KVA transformer is 98.77% at full load, 0.8 p.f and 99.13% at half load, unity power factor . Find iron loss & copper loss at both full & half load.(CO3,K3)	10
7. Answ	ver any one of the following:-	
7-a.	Explain what is PIV. Also calculate PIV ,Ripple factor and Rectifier efficiency for Half Wave Rectifier . (CO4,K3)	10
7-b.	State and explain the characteristics of Zener diode. How it can be used as a voltage regulator? (CO4,K2)	10
8. Answ	ver any one of the following:-	
8-a.	List the various sensors used in IoT and give their application. (CO5,K2)	10
8-b.	Draw and explain the Block diagram of Digital multimeter. Give some applications of it. (CO5,K2)	10