Printed	d Pag	ge:-03 Subject Code:- BCSE0305 / BCSEH0305 Roll. No:	•	
			7	
N	IOID	DA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA	╝	
	. •	(An Autonomous Institute Affiliated to AKTU, Lucknow)		
		B.Tech		
		SEM: III - THEORY EXAMINATION (2024 - 2025)		
Time	3. 2 L	Subject: Computer Organization and Architecture Hours Max. Marks: 10	Ω	
		structions:	U	
		by that you have received the question paper with the correct course, code, branch etc.		
		estion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice		
	•	(MCQ's) & Subjective type questions.		
		m marks for each question are indicated on right -hand side of each question.		
		e your answers with neat sketches wherever necessary. suitable data if necessary.		
		ply, write the answers in sequential order.		
		t should be left blank. Any written material after a blank sheet will not be		
		checked.		
SECT	<u>ION</u>	<u>1-A</u> 2	0	
1. Atte	empt	all parts:-		
1-a.	Τ	The smallest unit of data in computer is(CO1,K1)	1	
	(a)	Byte		
	(b)	Nibble		
	(c)	Bit		
	(d)	KB		
1-b.		The addressing mode in which the operands are in registors that reside within the CPU.(CO1,K2)	1	
	(a)	Register addressing mode		
	(b)	Index addressing mode		
	(c)	Relative addressing mode		
	(d)	Implied addressing mode		
1-c.		When we perform subtraction on -7 and -5 the answer in 2's complement form is: (CO2,K2)	1	
	(a)	11110		
	(b)	1110		
	(c)	1010		
	(d)	1000		
1-d.		The ALU gives the output of the operations and the output is stored in he.(CO2,K1)	1	

	(a)	Memory Devices		
	(b)	Registers		
	(c)	Flags		
	(d)	Output Unit		
1-e.	Two important fields of an instruction are (CO3,K1)			
	(a)	Opcode		
	(b)	Operand		
	(c)	mode		
	(d)	Both 1 & 2		
1-f.	T	he type of control signal is generated based on(CO3,K2)	1	
	(a)	contents of the step counter		
	(b)	Contents of IR		
	(c)	Contents of condition flags		
	(d)	All of the mentioned		
1-g.	When power is switched off which memory loses its data.(CO4,K1)			
	(a)	Non-Volatile Memory		
	(b)	Volatile Memory		
	(c)	Both A and B		
	(d)	None of the above		
1-h.	T	he secondary memory of a computer can act as a(CO4,K2)	1	
	(a)	Cache		
	(b)	virtual memory		
	(c)	RAM		
	(d)	ROM		
1-i.	U	ART stands for(CO5,K1)	1	
	(a)	Universal Asynchronous Receiver Transmitter		
	(b)	Universal Asynchronous Relay Transmission		
	(c)	Universal Accumulator Register Transfer		
	(d)	None		
1-j.	A	n interrupt that can be not ignored is (CO5,K2)	1	
	(a)	TRAP		
	(b)	Software		
	(c)	Both		
	(d)	None of above		
2. Att	empt a	all parts:-		
2.a.	E	xplain different type of buses. (CO1,K2)	2	
2.b.	Е	xplain the Advantages and Disadvantages of CLA.(CO2,K2)	2	

2.c.	Differenciate between instruction & Program.(CO3,K2)	2
2.d.	Define role of key register in associative memory.(CO4,K2)	2
2.e.	Explain the difference between paging and segmentation .(CO4,K3)	2
SECTIO	ON-B	30
3. Answ	er any five of the following:-	
3-a.	Explain Single accumulator organization, General register organization and Stack organization.(CO1,K1)	6
3-b.	Explain various types of bus arbitration and explain with block diagram. (CO1,K2)	6
3-c.	Represent double precision of IEEE 754 for -2.35 .(CO2,K3)	6
3-d.	Describe CLA. Explain with the help of logic diagram. (CO2,K3)	6
3.e.	Evaluate the arithmetic expression $X = (A + B) * (C + D)$ using two address and three address instructions. (CO3,K2)	6
3.f.	Describe FIFO and LIFO page replacement algorithms.(CO4,K2)	6
3.g.	Explain Daisy Chaining method of establishing priority with diagram. (CO5,K2)	6
SECTIO	<u>ON-C</u>	50
4. Answ	rer any one of the following:-	
4-a.	Define common fields found in instruction format. Explain any two addressing modes with example. (CO1,K3)	10
4-b.	Explain Rotating arbitration scheme with diagram, its advantage and disadvantage.(CO1,K2)	10
5. Answ	er any one of the following:-	
5-a.	Describe the array multiplier 2 bit binary numbers b1 b0 X a1 a0 with AND gate and half adder.(CO2,K2)	10
5-b.	Explain Booth multiplication algorithm flow diagram with example.(CO2,K3)	10
6. Answ	er any one of the following:-	
6-a.	Discuss the different types of microoperations with examples.(CO3,K2)	10
6-b.	Demonstrate the three address and one address instruction with suitable examples.(CO3,K2)	10
7. Answ	ver any one of the following:-	
7-a.	Discuss the 2D and 2.5 D organization with suitable diagram.(CO4,k3)	10
7-b.	Discuss the different mapping techniques used in cache memories and their relative merits and demerits.(CO4,K2)	10
8. Answ	er any one of the following:-	
8-a.	Describe Input-Output Processor (IOP)? Draw block diagram of a computer with I/O Processor.(CO5,K3)	10
8-b.	Explain DMA transfer in a computer system with help of a diagram.(CO5,K2)	10