Printed Pag	ge:-04	Subject Code:- BCSBS0303 Roll. No:
NOIE	(An Autonomous Institute A. B.T	AND TECHNOLOGY, GREATER NOIDA ffiliated to AKTU, Lucknow)
	SEM: III - THEORY EXAL	anization & Architecture
Time: 3 l		Max. Marks: 100
General In		
		paper with the correct course, code, branch etc.
_		ns -A, B, & C. It consists of Multiple Choice
_	(MCQ's) & Subjective type questions.	ed on right -hand side of each question.
	n marks for each question are thatcat your answers with neat sketches whe	v i
	suitable data if necessary.	rever necessary.
	ly, write the answers in sequential ord	der.
	should be left blank. Any written mat	erial after a blank sheet will not be
evaluated/o	checked.	
SECTION		20
1. Attempt		
1-a. I	Brain of computer is(C	O1,K2)
(a)	Control unit	
(b)	Arithmetic and Logic unit	
(c)	Central Processing Unit	
(d)	Memory	
1-b.	The smallest unit of data in computer i	s(CO1,K2) 1
(a)	Byte	
(b)	Nibble	
(c)	Bit	
(d)	KB	
1-c.	If A and B are the inputs of a half added (CO2,K2)	er, the sum is given by
(a)	A AND B	
(b)	A OR B	
(c)	A XOR B	
(d)	A EX-NOR B	
1-d. (Convert (52)base of 16 into its decimal	l equivalent.(CO2,K2)
(a)	28	
(b)	83	

	(c)	82	
	(d)	N.O.T	
1-e.		or vertical microprogrammed control unit, n control signal equiresbit encoding.(CO3,K2)	1
	(a)	log2n	
	(b)	n-1	
	(c)	2^n	
	(d)	log2n-1	
1-f.		which of the following is the fastest type of memory in the memory iterarchy.(CO3,K2)	1
	(a)	Cache Memory	
	(b)	Main Memory	
	(c)	Secondary Storage	
	(d)	Register	
1-g.		he input is used by the DMA controller to request the CPU to relinquish ontrol of the buses.(CO4,K2)	1
	(a)	Bus Grant	
	(b)	Bus request	
	(c)	Burst Transfer	
	(d)	Data Input	
1-h.	U	Bus request Burst Transfer Data Input ART stands for(CO4,K2) Universal Asynchronous Receiver Transmitter	1
(a) Universal Asynchronous Receiver Transmitter			
	(b)	Universal Asynchronous Relay Transmission	
	(c)	Universal Accumulator Register Transfer	
	(d)	None	
1-i.		ach stage in pipelining should be completed within	1
	(a)		
	(b)	2	
	(c)	3	
	(d)	4	
1-j.	_	have been developed specifically for pipelined systems.(CO5,K2)	1
	(a)	Utility software	
	(b)	Speed up utilities	
	(c)	Optimizing compilers	
	(d)	None of the mentioned	
2. Atte	empt a	all parts:-	
2.a.	E	xplain the function of Stack pointer (SP) and program counter (PC).(CO1,K2)	2

2.b.	Explain universal logic gates with truth table.(CO2,K2)	2
2.c.	Give classification of memory.(CO3,K2)	2
2.d.	Define Input-Output Interface and its advantage.(CO4,K2)	2
2.e.	Explain types of Pipeline.(CO5,K2)	2
SECTION	ON-B	30
3. Answ	ver any five of the following:-	
3-a.	Define bus arbitration and Explain the various types of bus arbitration techniques.(CO1,K3)	6
3-b.	Define Instruction format and Instruction cycle.(CO1,K2)	6
3-c.	Write the short notes on ALU and design 2 bit ALU Design in digital computer.(CO2,K3)	6
3-d.	Draw array multiplier of 2 bit, A=a1a0, B=b1 b0 .(CO2,K3)	6
3.e.	How the mapping is done between cache and main memory. Explain associative and Set-associative mapping.(CO3,K3)	6
3.f.	Define DMA. Explain DMA transfer in a computer system with the help of diagram.(CO4,K3)	6
3.g.	Write short notes on Single-instruction, single-data (SISD) systems (CO5,K2)	6
SECTION	ON-C	50
4. Answ	ver any <u>one</u> of the following:-	
4-a.	Draw the Multiple Bus structures along with its advantage and disadvantage.(CO1,K2)	10
4-b.	Define three state buffers and Draw the common bus architecture by using three state buffer.(CO1,K2)	10
5. Answ	ver any one of the following:-	
5-a.	Design the 4 bit Integer addition and subtraction with suitable diagram.(CO2,K3)	10
5-b.	Explain the IEEE 754 floating point representation for floating point numbers with examples.(CO2,K3)	10
6. Answ	ver any one of the following:-	
6-a.	Write a program to evaluate the arithmetic expression by using Three, and Zero address instruction. $X=(A+B)*(C+D)$. (CO3,K3)	10
6-b.	Explain one address & two address instruction with example.(CO3,K2)	10
7. Answ	ver any one of the following:-	
7-a.	Explain the difference between program controlled, interrupt driven and DMA mode of data transfer.(CO4,K3)	10
7-b.	Explain the following with respect to DMA transfer: a) Bus request and Bus grant b)Burst Transfer c) Cycle stealing(CO4,K3)	10
8. Answ	ver any one of the following:-	
8-a.	Design and explain the concept of Pipelining with the help of suitable	10

example.(CO5,K2)

8-b. Define five pipeline stages in computer architecture and explain with the help of block diagram.(CO5,K2)

10

COP. JULY DEC. 2024