Printed Page:-03		Subject Code:- BBT0303 Roll. No:			
NOI		ND TECHNOLOGY, GREATER NOIDA filiated to AKTU, Lucknow) ech			
	Subject: Genetics and				
Time: 3		Max. Marks: 100			
IMP: Veri 1. This Qu Questions	uestion paper comprises of three Section. s (MCQ's) & Subjective type questions.	aper with the correct course, code, branch etc. s -A, B, & C. It consists of Multiple Choice			
	rum marks for each question are indicated	· · · · · · · · · · · · · · · · · · ·			
	ite your answers with neat sketches wher e suitable data if necessary.	ever necessary.			
	e sunable data ij necessary. ably, write the answers in sequential orde	e r.			
v	et should be left blank. Any written mater				
evaluated	l/checked.				
SECTIO	<u>N-A</u>	20			
1. Attemp	1. Attempt all parts:-				
1-a.	What is the basic unit of chromatin? ((CO1, K1)			
(a)) Nucleosome				
(b	o) Centromere				
(c)	e) Telomere				
(d	l) Kinetochore				
1-b.	Which structure is responsible for chron (CO1, K1)	nosome movement during cell division?			
(a) Nucleolus				
(b	o) Centrosome				
(c)	e) Centromere				
(d	l) Nucleosome				
1-c.	Who discovered DNA as the genetic ma	terial? (CO2, K1)			
(a)) Griffith				
(b) Avery, McCarty, and MacLeod				
(c)	e) Watson and Crick				
(d	l) Hershey and Chase				
1-d. Hershey and Chase used which of the following in their experiment? (CO2, K)		ollowing in their experiment? (CO2, K1)			
(a)) Bacteria and radioactive sulfur				
(b) Mice and bacteria				

	(c)	Bacteriophages and radioactive isotopes	
	(d)	Yeast and fungi	
1-e.	Ir	prokaryotes, transcription occurs in the: (CO3, K1)	1
	(a)	Nucleus	
	(b)	Cytoplasm	
	(c)	Mitochondria	
	(d)	Ribosomes	
1-f.	W	That is the enzyme responsible for transcription in prokaryotes? (CO3, K1)	1
	(a)	DNA polymerase	
	(b)	RNA polymerase	
	(c)	Helicase	
	(d)	Ligase	
1-g.	W	That is the role of an activator in gene regulation? (CO4, K1)	1
	(a)	Inhibits gene expression	
	(b)	Enhances gene expression	
	(c)	Binds to DNA helicase	
	(d)	Binds to ribosomes	
1-h.	A	ttenuation is a mechanism of regulation seen in: (CO4, K1)	1
	(a)	Prokaryotes	
	(b)	Eukaryotes	
	(c)	Viruses	
	(d)	Archaea	
1-i.	W	What is Mendel's first law? (CO5, K1)	1
	(a)	Law of Segregation	
	(b)	Law of Dominance	
	(c)	Law of Independent Assortment	
	(d)	Law of Recombination	
1-j.	C	hi-square test is used in genetics to: (CO5, K1)	1
	(a)	Test gene expression	
	(b)	Determine dominance	
	(c)	Evaluate the goodness of fit	
	(d)	Find crossing over points	
2. Att	empt a	all parts:-	
2.a.	Id	lentify the phenotypic ratio observed in a dihybrid cross. (CO1, K1)	2
2.b.		escribe the primary structures of chromosomes. (CO2, K1)	2
2.c.		lassify the types of bonds involved in the DNA double helix structure. (CO3,	2
		(2)	
2.d.	C	lassify the stop codons of the genetic code and explain their significance. (CO4,	2

	K2)	
2.e.	Diagram the structure of the lac operon. (CO5, K1)	2
SECT	ION-B	30
3. Ans	wer any <u>five</u> of the following:-	
3-a.	Define the chi-square test and outline its application in genetics. (CO1, K2)	6
3-b.	Identify the key differences between complete dominance and incomplete dominance with examples. (CO1, K1)	6
3-c.	Contrast DNA damage caused by radiation versus chemical mutagens. (CO2, K2)	6
3-d.	Contrast the methods for detecting mutations. Explain any one technique used to detect mutations. (CO2, K2)	6
3.e.	Demonstrate how PCR can be used in genetic testing. (CO3, K3)	6
3.f.	Simplify the elongation phase of translation in prokaryotes. (CO4, K4)	6
3.g.	Illustrate the operon model of gene expression? (CO5, K4)	6
SECT	ION-C	50
4. Ans	wer any <u>one</u> of the following:-	
4-a.	Outline the concept of multiple alleles and describe their significance using the ABO blood group system. (CO1, K1)	10
4-b.	Define Hardy-Weinberg equilibrium and describe its applications in population genetics. (CO1, K1)	10
5. Ans	wer any <u>one</u> of the following:-	
5-a.	Discuss the principles and clinical applications of fluorescence in situ hybridization (FISH). (CO2, K2)	10
5-b.	Describe the process of homologous recombination and its role in DNA repair. (CO2, K2)	10
6. Ans	wer any <u>one</u> of the following:-	
6-a.	Break down the entire process of DNA replication in eukaryotes, categorizing the roles of key enzymes. (CO3, K4)	10
6-b.	Use the Meselson-Stahl experiment to demonstrate the concept of semi- conservative replication. (CO3, K3)	10
7. Ans	wer any one of the following:-	
7-a.	Simplify the steps involved in tRNA charging and its role in translation. (CO4, K4)	10
7-b.	Simplify the differences between Rho-dependent and Rho-independent termination of transcription. (CO4, K4)	10
8. Ans	wer any <u>one</u> of the following:-	
8-a.	Diagram the process of alternative splicing and analyze its role in proteome diversity. (CO5, K4)	10
8-b.	Illustrate the pathways of protein folding and stability and analyze their	10

importance in cellular function. (CO5, K4)