Printed Pa	age:- 04	Subject Code:- BAS0301B Roll. No:	
		Kon. 140:	\neg
NOIDA	INSTITUTE OF ENGINEERING	AND TECHNOLOGY, GREATER NOIDA	
ПОІВЛ		Affiliated to AKTU, Lucknow)	
	·	Гесһ	
		MINATION (2024 - 2025)	
Time: 3	-	ing Mathematics III Max. Marks: 10	ሰሰ
	nstructions:	Iviax. Iviai RS. 10	JU
		paper with the correct course, code, branch etc	2.
_		ons -A, B, & C. It consists of Multiple Choice	
_	(MCQ's) & Subjective type questions.	ted on right -hand side of each question.	
	m marks for each question are maicat e your answers with neat sketches who	v i	
	suitable data if necessary.		
•	bly, write the answers in sequential or		
6. No shee evaluated/	t should be left blank. Any written mai	terial after a blank sheet will not be	
evatuatea/	спескей.		
SECTION	N-A		20
1. Attempt all parts:-			
-	Solution of the P.D.E $(D^2 - 3DD' + 2)$	$D'^{2})z = 0 : (CO1, K1)$	1
(a)	C () L C (2)		
(b)	f () + f (2+)		
(c)	6 (1) 1 6 (12)		
(d)	$\mathcal{L}(\mathcal{L}(\mathcal{L}))$		
()	Solution of the P.D.E $(D+2D')(D-D'-D')$	z')z=0 (CO1,K1)	1
(a)	$f_1(x+y) + f_2(2x-y)$		
(b)	$f_1(y-2x) + e^x f_2(y+x)$		
(c)	$f_1(y-2x) + xf_2(y+x)$		
(d)	$f_1(y+2x) + e^x f_2(y+x)$		
1-c.	The inverse Z – transform of $F(z) = \frac{z}{(z-2)}$ is:	(CO2,K1)	1
(a)	2(k+1)		
(b)	3k		
(c)	2(-k)		

 $\text{If } f_1(p) \text{ and } f_2(p) \text{ are the Fourier transform of } F_1(x) \text{ and } F_2(x) \text{ the } F\{c_1F_1(x)+c_2F_2(x)\} \text{ is } (\text{CO2},\text{K1})$

(d)

1-d.

	(a)	$c_1 f_1(p) - c_2 f_2(p)$	
	(b)	$c_1 f_1(p) + c_2 f_2(p)$	
	(c)	$c_2 f_1(p) + c_1 f_2(p)$	
	(d)	None of these	
1-e.	` _	z) satisfies Cauchy Rinmanns equations everywhere then f(z)(CO3,K2)	1
	(a)	May be analytic everywhere	
	(b)	Analytic everywhere	
	(c)	Analytic except at origin	
	(d)	None of these	
1-f.	, ,	he expression $ad-bc$ for the transformation $w = \frac{(az+b)}{(cz+d)}$ is called (CO3,K1)	1
	(a)	Determinant of bilinear transformation	
	(b)	Cross ratio	
	(c)	Inverse mapping	
	(d)	None of these	
1-g.	Т	he residue of the function $f(z) = \frac{z+1}{z^2(z-2)}$ at $z = 2$ is(CO4,K1,K3)	1
	(a)	3/4	
	(b)		
	(c)		
	(d)	None of these	
1-h.	Z	eros of z^2-3z+2 are (CO4,K1)	1
	(a)	1,1	
	(b)	1, 0	
	(c)	1, 2	
	(d)	None of these	
1-i.	T	he value of $P(n, n-1)$ is $(CO5,K1)$	1
	(a)	n	
	(b)	n!	
	(c)	2n	
	(d)	2n!	
1-j.		elect a figure from amongst the answer figure which will continue the same eries as stablished by the five-figure problem. (CO5,K2)	1

Problem Figure

Answer Figure

- (a) 1
- (b) 2
- (c) 3
- (d) 5
- 2. Attempt all parts:-

2.a. Classify the P.D.E:
$$\frac{\partial^2 \mathbf{u}}{\partial t^2} + 2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial t} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 2 \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + 6\mathbf{u} = 0.(\text{CO1,K2})$$

2.b. Determine the Z-transform of
$$f(k) = k$$
 for $k \ge 0$. (CO2, K3)

2.d. Evaluate
$$\oint_C (y-x-3x^2i)dz$$
, where C is straight line from $z=0$ to $z=1+i.(CO4,K3)^2$

2.e. Define Bijective Functions. (CO5,K1)

3. Answer any five of the following:-

3-a. Find the solution of the heat flow in one dimension
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$
 which is consistent with the physical nature of the problem. (CO1,K3)

3-b. Solve:
$$s + ap + bq + abz = e^{(mx + ny)}.(CO1,K3)$$

3-c. Using differentiation property , find the
$$Z$$
 - transform of $f(k) = ka^k u(k)$. (CO2, K1, K3)

$$F(x) = \begin{cases} \frac{i}{2 \in }, & |x| \le \in \\ 0, & x > \in \end{cases}$$

3.e. Show that
$$w = \frac{i-z}{i+z}$$
 maps the real axis of the z-plane into the circle $|w| = 1$. (CO3, K3)

3.f. Evaluate
$$\oint_C \frac{z}{(z^2+1)} dz$$
, where C: $|z+i| = 1.(CO4,K3)$

SECTION-C 50 4. Answer any <u>one</u> of the following:-Solve the linear P.D.E: $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial v} - 6 \frac{\partial^2 z}{\partial v^2} = y \cos x$. (CO1,K3) 4-a. 10 Solve the following PDE by method of separation of variables: $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{\partial \mathbf{u}}{\partial \mathbf{v}}$. (CO1,K3) 4-b. 5. Answer any one of the following:-Find the Fourier cosine and Fourier sine transform of the function (CO2, K3). 5-a. 10 $f(x) = e^{-3x} + e^{-4x}$ Using Z-transform, solve the equation (CO2, K3) 5-b. 10 $6y_{k+2} - y_{k+1} - y_k = 0$, y(0) = 0, y(1) = 1. 6. Answer any one of the following:-Examine the nature of the function $f(z) = \frac{x^3 y^5 (x+iy)}{(x^6 + y^{10})} z \neq 0$ and 6-a. 10 f(0) = 0 in the region including the origin. (CO3, K3) If $u-v=e^{x}(\cos y-\sin y)$ and f(z)=u+iv is an analytic function of z=x+iy, 6-b. 10 find f(z) in terms of z.(CO3,K3) 7. Answer any <u>one</u> of the following:-Evaluate by using Cauchy's Residue theorem: $\int_{C} \frac{e^{z}}{(z+1)^{2}(z+1)^{2}}$ 7-a. 10 where C is the circle |z-1| = 3.(CO4,K3)7-b. Obtain the Taylor or Laurent series which represent the function 10 $f(z) = \frac{1}{(1+z^2)(z+2)}$ in the region I. 1 < |z| < 2П. |z| >1. (CO4,K3) 8. Answer any <u>one</u> of the following: 8-a. Justify Answer for the following Statement and conclusion: 10 Statements: (CO5,K2) Statements: All the locks are keys. All the keys are bats. Some watches are bats. Conclusions: Some bats are locks. Some watches are keys. All the keys are locks.

Page 4 of 4

10

8-b.

Solve the following (CO5,K1,K3)

I. Find the unit digit of $(4137)^{754}$

Find the remainder when 3^{256} is divisible by 5.