Printed Page:- 04		rage:- 04 Subject Co Roll. No:	Subject Code:- AMICSE0404						
								$\overline{}$	
NO	IDA :	A INSTITUTE OF ENGINEERING AND TECH	NOL	OGY	, GRI	EATE	RN	OID) A
		(An Autonomous Institute Affiliated to A			•				
		M.Tech (Integr	-						
		SEM: IV - THEORY EXAMINATION							
Tim	ω· 3 Ι	Subject: Theory of Automata and Form Hours	mai L	angu	ages	Max	Ma	rke	• 100
		instructions:				Max	. 1 V1 a	11 172	. 100
		ify that you have received the question paper with th	he cor	rect c	ourse,	code,	bra	nch	etc.
1. This	s Que	testion paper comprises of three Sections -A, B, &	C. It c	onsis	ts of M	Iultipl	e Ch	oice	2
		(MCQ's) & Subjective type questions.							
		um marks for each question are indicated on right -l		side oj	f each	questi	ion.		
		te your answers with neat sketches wherever necess suitable data if necessary.	ary.						
		bly, write the answers in sequential order.							
		et should be left blank. Any written material after a l	blank	sheet	will n	ot be			
evalud	ated/cl	/checked.							
					N				
SECTION-A 1. Attempt all parts:-						×			20
1-a.	•	Identify the element that is not part of the 5-tuple do	efiniti	on of) a finit	e auto	mate	n.	1
ı u.		(CO1, K2)			a 111111	c dato	mac	<i>,</i> 111.	1
	(a)	Input alphabet							
	(b)								
	(c)								
	(d)	Output Alphabet							
1-b.	Id	Identify the wrong statement in the given definition	? Def	initio	n: ({q(), q1, d	q2},		1
		$\{0,1\}, \delta, q4, \{q4\})$ (CO1, K2)			```	, 1 ,	1 ,,		
	(a)	The definition does not satisfy 5 Tuple definition	n of N	FA					
	(b)	There are no transition definition							
	(c)	Initial and final states can't be same							
	(d)	Initial and Final states do not belong to the set o	f state	es.					
1-c.	Pı	Pumping Lemma is used for proving	•	(CO2	, K1)				1
	(a)	A given language is regular							
	(b)	A given grammar is regular							
	(c)	A given language is not regular							
	(d)								
1-d.	A	A regular languages are accepted by the following r	nachi	ne		·			1
	((CO2, K1)							

	(a)	LBA				
	(b)	PDA				
	(c)	DFA				
	(d)	NPDA				
1-e.	A context free language is called ambiguous if (CO3,K1)					
	(a)	It has 2 or more left derivations for some terminal string $\omega \in L(G)$				
	(b)	it has 2 or more right derivations for some terminal string $\omega \in L(G)$				
	(c)	Both of the mentioned				
	(d)	None of the mentioned				
1-f.	A CFG is closed under (CO3, K1)					
	(a)	Union				
	(b)	Intersection				
	(c)	Complementation				
	(d)	All of the above				
1-g.	T	he representation of PDA can be done through following ways: (CO4,K1)	1			
	(a)	Instantaneous Description				
	(b)	Transition graph				
	(c)	Transition table				
	(d)	All of the mentioned				
1-h.	If the PDA does not stop on an accepting state and the stack is not empty, the					
	st	ring is (CO4, K1)				
	(a)	Rejected				
	(b)	goes into loop forever				
	(c)	Both of above				
	(d)	None of the mentioned				
1-i.	Τ	Curing machine was invented by (CO5, K1)	1			
	(a)	Alan Turing				
	(b)	Turing man				
	(c)	Turing taring				
	(d)	None of these				
1-j.	The language recognized by Turing machine is (CO5, K1)					
	(a)	Context free language				
	(b)	Context sensitive language				
	(c)	Recursively enumerable language				
	(d)	Regular language				
2. Atte	empt a	all parts:-				
2.a.		rescribe some points of difference between Moore and Mealy machine.	2			

2.b.	State Arden's Theorem. (CO2, K1)	2
2.c.	Define Parse tree with an example . (CO3, K1)	2
2.d.	Describe rules that are used to convert a CFG into PDA. (CO4, K2)	2
2.e.	Explain Universal Turing Machine in brief. (CO5, K2)	2
SECTIO	<u>ON-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Explain the procedure to convert a moore machine into its corresponding mealy machine. (CO1, K2)	6
3-b.	Convert the following NFAs into DFAs: (CO1, K3)	6
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3-c.	Convert the following regular expressions into Finite Automata: a*(a+b)*(ab*a)*. (CO2, K3)	6
3-d.	Construct a Finite Automata for $1*(1+0)*(001*(0*1*)1)$. (CO2, K3)	6
3.e.	Construct Context Free Grammar (CFG) for the strings of balanced parenthesis. (CO3, K3)	6
3.f.	Design a PDA for the language $L = \{ w c w^r w \in \{ a, b \}^* \}$. (CO4, K3)	6
3.g.	Explain the Halting Problem and analyze why it is considered undecidable. (CO5,K3)	6
SECTIO	<u>ON-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Explain Chomsky Classification of Grammars in detail. (CO1,K2)	10
4-b.	Convert the following Mealy machine into equivalent Moore machine. (CO1, K3)	10
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

5. Answer any one of the following:-

```
5-a.
         Define Regular grammar and Prove (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)* = 0
                                                                                               10
         0*1(0+10*1)*
                             (CO2,K3)
5-b.
         Construct the finite automaton equivalent to the regular expressions
                                                                                  (CO2,
                                                                                               10
          K3)
         i) (0+1)*(00+11)(0+1)*
         ii) (ab*(a+b)c(a+b))* ab*a(a+b)*
6. Answer any one of the following:-
6-a.
         Discuss the Chomsky Normal Form. Change the following grammar into
                                                                                               10
         Chomsky Normal Form (CNF).
                                              (CO3, K3)
            S \longrightarrow abSb / a / aAb
            A \longrightarrow bS / aAAb
6-b.
         Consider the grammar
                                           (CO3, K3)
                                                                                               10
              S \longrightarrow aB / bA
              A \longrightarrow aS / bAA / a
              B \longrightarrow bS/aBB/b
         For the string aaabbabbba, Design
         (i) The left most derivation and left most derivation tree
         (ii) The right most derivation and right most derivation tree
7. Answer any <u>one</u> of the following:-
7-a.
         Describe the Definition of Pushdown Automata. Is PDA more powerful than
                                                                                               10
         Finite Automata? if Yes than why? also Design PDA for Language L = \{
          a^{m+n}b^mc^n / m, n > 1
                                      (CO4, K3)
7-b.
         Compare Finite Automata (FA) and Pushdown Automata (PDA). Construct a PDA
                                                                                               10
         accepting all palindromes over {a, b}.
                                                     (CO4, K4)
8. Answer any <u>one</u> of the following:-
8-a.
         Design a Turing machine to compute the following
                                                                              (CO5, K3)
                                                                                               10
          a) Division of Two integers
         b) 2's complement of a given binary number
         Explain the following terms:
8-b.
                                                                                               10
                                              (CO5, K2)
         (i) Post's Correspondence Problem
         (ii) Recursively Enumerable Language
```