Printe	ed Pag	
		Roll. No:
NO	IDA 1	INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
NO	IDA .	(An Autonomous Institute Affiliated to AKTU, Lucknow)
		B.Tech
		SEM: III - THEORY EXAMINATION (2024 - 2025)
771		Subject: Industrial Engineering
	e: 3 H	Hours Max. Marks: 100 structions:
		y that you have received the question paper with the correct course, code, branch etc.
		stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice
	_	MCQ's) & Subjective type questions.
2. <i>Ma</i> :	ximun	n marks for each question are indicated on right -hand side of each question.
		your answers with neat sketches wherever necessary.
		uitable data if necessary.
-		ly, write the answers in sequential order. should be left blank. Any written material after a blank sheet will not be
		hecked.
SECT		
1. Atte	•	all parts:-
1-a.	V	ehicle manufacturing assembly line is an example of [CO1,K1]
	(a)	Product layout
	(b)	Process layout
	(c)	Manual layout
	(d)	Fixed layout
1-b.	W	Thich one of the following combinations is valid for product layout? [CO1,K1]
	(a)	General purpose machine and unskilled labour
	(b)	Special purpose machine and semi-skilled labour
	(c)	General purpose machine and skilled labour
	(d)	Special purpose machine and skilled labour
1-c.	W	Then using a simple moving average to forecast demand, one would. [CO2,K1]
	(a)	Give equal weight to all demand data.
	(b)	Assign more weight to the recent demand data.
	(c)	Include new demand data in the average without discarding the earlier data.
	(d)	Include new demand data in the average after discarding some of the earlier demand
	data	
1-d.	Tl	he MRP forms a vital link between sales and production as follows: [CO2,K1] 1
	(a)	The MRP makes possible valid order promises.
	(b)	The MRP is a plan of what is to be produced and when.

	(c)	The MRP is a contract between marketing and manufacturing.	
	(d)	All of the above	
1-e.	av of	rrivals at a telephone booth are considered to be Poisson, with an verage time of 10 minutes between successive arrivals. The length f a phone call is distributed exponentially with mean 3 min. The robability that an arrival does not have to wait before service is: [CO3,K2]	1
	(a)	0.3	
	(b)	0.5	
	(c)	0.7	
	(d)	0.9	
1-f.	av as	he inter-arrival times at a tool crib are exponential with an verage time of 10 minutes and the length of the service time is. [CO3,K2] sumed to be exponential with mean 6 minutes. The probability hat a person arriving at the booth will have to wait is equal to:	1
	(a)	0.15	
	(b)	0.04	
	(c)	0.42	
	(d)	0.6	
1-g.	V	Vork study examines. [CO4,K1]	1
	(a)	Vork study examines. [CO4,K1] method duration of work hoth 'a' and 'b'	
	(b)	duration of work	
	(c)	both 'a' and 'b'	
	(d)	NONE of the above	
1-h.	T	he correct order of procedure in method study is. [CO4,K1]	1
	(a)	Select – Record – Examine – Develop – Define – Install – Maintain	
	(b)	Select – Define – Examine – Develop – Record – Install – Maintain	
	(c)	Select – Record – Develop – Examine – Define – Install – Maintain	
	(d)	Select – Record – Examine – Define – Develop – Install – Maintain	
1-i.	A	feasible solution to a linear programming problem [CO5,K1]	1
	(a)	must satisfy all the constraints of the problem simultaneously	
	(b)	need not satisfy all of the constraints, only some of them	
	(c)	must be a corner point of the feasible region.	
	(d)	must optimize the value of the objective function	
1-j.	al	is a mathematical technique used to solve the problem of locating limited resource among the competing activities. [CO5,K1]	1
	(a)	Linear Programming problem	
	(b)	Assignment Problem	
	(c)	Replacement Problem	
	(d)	Non linear Programming Problem	

2. Attemp	ot all parts:-												
2.a.	Distinguish between	en produ	ıctior	n and	prod	uctiv	ity.	[CO1	,K2]				2
2.b.	Distinguish between	en float	and s	slack.	[CC)2,K2	2]						2
2.c.	What are the basic	c charact	eristi	cs of	a que	euing	, syst	em?	[CO	3,K2]		2
2.d.	Write down the im	nportanc	e of l	Motic	on Ec	onon	ny. [CO4,	K2]				2
2.e.	What is linear prog	grammiı	ng? [0	CO5,	K1]								2
SECTIO	<u>N-B</u>												30
3. Answe	er any five of the fo	llowing:	-										
3-a.	What are the vario	ous comp	outeri	ized t	echni	iques	used	for p	olant	layoı	ıt. [C	O1,K2]	6
3-b.	Setting up an Indu	ıstry in r	ural a	area i	s moi	re ad	vanta	geou	s. Jus	stify	CO1	,K2]	6
3-c.	A project is compo				_		ies w	hose	time	estin	nates	in days are	6
	given below. Drav	w the net	work	[C	O2,K								
	Activity	1879	35339	B C	2550	57/35	F						
	Immediate predec	- 2.75	-	A A	40	C 2	D,E						
	Duration in week	CS	2	5 1	1	6	l						
3-d.	what do you under input and output o	-			-	ireme	ent pl	annin	ıg (M	IRP).	also	explain	6
3.e.	What are the funct					o12 [CO3	K21			X		6
3.f.	Explain the concep			_		_		_	OW C	"hart	Evnl	ain the	6
3.1.	phases of Value E	-		_	_			sat 11	OW	liait	Expi	am me	U
3.g.	Write the steps inv feasible solution to					- 4			for f	indin	g an i	initial basio	e 6
SECTIO			1	,				-					50
	r any <u>one</u> of the fol	llowing:		1									
4-a.	Explain the element	nts of F	lexib	le ma	nufa	cturii	ng sy	stem	with	help	of bl	ock	10
	diagram. Write do	own the	adva	ntage	and	disad	lvanta	ages o	of FN	1S. [0	CO1,	K2]	
4-b.	What are the facto industry. [CO1, K		ning	the p	lant l	locati	on. E	Explai	in wi	th an	y one	specific	10
5. Answe	er any <u>one</u> of the fol	Ilowing:	_										
5-a.	For a certain proje	ect the da	ata is	give	n belo	ow. I) raw	the n	etwo	rk dia	agran	n, Compute	e 10
	EST,EFT,LST,LF	T and sl	ack a	lso ic	lentif	y the	criti	cal pa	ath. [CO2,	K3]		
	Activity 1	1-2 1-4	1-7	2-3	3-6	4-5	4-8	5-6	6-9	7-8	8-9		
	Expected time 2 (in months)	2 2	1	4	1	3	8	4	3	3	5		
	8/8	40 0	\$	\$ 0	7	12 3		30 3		K	N	59	

5-b. The following table shows the jobs of a network along with their time estimates.

Draw the project network and find the probability of project completion in 40 days [CO2, K3]

JOB	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8
to	1	2	2	2	7	5	5	3	8
tm	7	5	14	5	10	5	8	3	17
tp	13	14	26	8	19	17	29	9	32

Question Instruction

- 6. Answer any one of the following:-
- 6-a. The demand for an item is deterministic and constant over tme and is equal to 600 units per year. The per unit cost is Rs.50, while the cost of placing an order is Rs.5. The inventory carrying cost is 20 percent of the cost of inventory per annum and the cost of shortage is Rs.1 per unit, per month. Find the optimal quantity when tock outs are permitted. If stock outs are not permitted, what would be the loss to the company? [CO3,K3]
- 6-b. In a bank there is only on window. A solitary employee performs all the service required and the window remains continuously open from 7am to 1pm. It has discovered that an average number of clients is 54 during the day and the average service time is 5mins / person. Find
 - a) Average number of clients in the system.
 - b) Average waiting time.
 - c) The probability that a client has to spend more than 10mins in a system. [CO3,K3]
- 7. Answer any one of the following:-
- 7-a. Illuminate various methods or techniques of work measurement. [CO4,K2]
- 7-b. Name various types of charts available for recording the data. Explain them in detail. [CO4,K3]
- 8. Answer any one of the following:
- 8-a. Obtain an initial basic feasible solution to the following transportation problem using the Vogel Approximation method and obtain optimal solution [CO5,K4]

	1	2	3	4	Warehouse Capacity
	11	13	17	14	250
2	16	18	14	10	300
3	21	24	13	10	400
Market Demand	200	225	275	250	

8-b. Solve the following assignment problem.[CO5,K4]

		Jobs								
		J_1	J ₂	J ₃	J ₄					
2	W_1	10	15	24	30					
Workers	W ₂	16	20	28	10					
×	W ₃	12	18	30	16					
	W_4	9	24	32	18					

Page 4 of 4

10

10

10

10

COP. JULY DEC. 2024