Printed Page:- 04		Subject Code:- AEC0503												
			Roll	. No:				1			\neg			\neg
NC	TDA	INSTITUTE OF ENGINEERING A		TEC	<u>L</u>		OCI	<u> </u>	DE	<u> </u> ЛТІ	TD N			
110	IDA .	(An Autonomous Institute Af						-			יו אוע	(OII	DΑ	
		B.T					, — •-		,					
		SEM: V - THEORY EXAM												
(T) •	2.1	Subject: Electromagnetic 1	Field '	Theo	ry	and	Ant	enn		3.4	3.4		10	
	ie: 3 F	iours structions:								Max	K. IVI	ark	s: 10	Į U
		y that you have received the question	paper	with	the	cor	rect	сои	rse.	code	e. br	ancl	'i etc.	
		stion paper comprises of three Section	-											
		MCQ's) & Subjective type questions.												
		n marks for each question are indicate		_			side (of ec	ach (ques	tion.	,		
		your answers with neat sketches whe uitable data if necessary.	rever	neces	ssai	ry.								
		ly, write the answers in sequential ord	ler.											
		should be left blank. Any written mate		ıfter d	a bl	ank	shee	t wi	ll no	ot be				
evalu	ated/c	hecked.												
									A					
SECT	TION-	· <u>A</u>								<			2	20
1. Att	empt a	all parts:-					1							
1-a.		Thich of the following theorem conver	rt line	integ	gral	to s	urfac	e in	itegi	al? ((CO)	1,		1
	K	1)				Í								
	(a)	Divergence theorem		X										
	(b)	Stoke's theorem)										
	(c)	Both Divergence and Stoke's theore	m											
	(d)	None of the above												
1-b.	T	he divergence of the Gradient of a sca	ılar fie	eld is	kno	own	as: (CO	1, K	1)				1
	(a)	Curl												
	(b)	Vector Gradient												
	(c)	Laplacian												
	(d)	None of the above												
1-c.	W	That is the force (in Newton) on a char	rge 20	C in a	fie	ld 1	V/m ^c	? (C	O2,	K1)	ł			1
	(a)	0												
	(b)	1												
	(c)	2												
	(d)	3												
1-d.	U	nit of electric flux is (CO2,K1)												1
	(a)	Coulomb												
	(b)	Weber												

	(c)	Tesla					
	(d)	Weber/m					
1-e.		he concept of displacement current was a major contribution attributed to (CO3, 11)	1				
	(a)	Faraday					
	(b)	Lenz					
	(c)	Maxwell					
	(d)	Lorenz					
1-f.	T	he attenuation constant in free-space is (CO3, K1)	1				
	(a)	more than one					
	(b)	less than one					
	(c)	one					
	(d)	zero					
1-g.	T	he beam-width and the directivity of an antenna are(CO4, K1)	1				
	(a)	Directly proportional					
	(b)	Inversely proportional					
	(c)	Independent of each other					
	(d)	Equal					
1-h.	T	The radiation focusing capability of an antenna is known as (CO4, K1)					
	(a)	Efficiency					
	(b)	Stray factor					
	(c)	Directivity					
	(d)	Impedance					
1-i.		5 turn axial mode helical antenna has directivity of 24 dBi, the axial ratio of this	1				
		ntenna is					
	(a)	1.21					
	(b)	1.1					
	(c)						
	(d)	5	4				
1-j.		he most commonly used horn is (CO5, K1)]				
	(a)	H-plane sectoral horn					
	(b)	E-plane sectoral horn					
	(c)	Pyramidal horn					
	(d)	Conical horn					
	-	all parts:-					
2.a.		ransform the point P (5,3,6) in cylindrical coordinate system. (CO1, K1)	2				
2.b.		befine volume charge density.(CO2, K1)	2				
2.c.	F	ind the strength of a magnetic field H in free space, If the electric field strength	2				

	of a plane wave is 1V/m. (CO3, K1)	
2.d.	The radiation resistance of an antenna is 72 Ω and loss resistance is 8 Ω . Find the directivity, if the gain is 16. (CO4, K2)	2
2.e.	Explain the application of loop antenna as a direction finders. (CO5, K2)	2
SECTIO	0N-B	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Find the gradient of the scalar field W= $10r \sin^2\theta \cos\phi$. (CO1, K1)	6
3-b.	Using the differential length dl, find the length of $\rho=3$, $\pi/4<\varphi<\pi/2$, $z=$ constant. (CO1, K1)	6
3-c.	Explain the tangential and normal boundary conditions between two dielectrics for static electric fields. (CO2, K2)	ϵ
3-d.	Explain Biot Savart's Law.(CO2, K1)	6
3.e.	Show that the ratio of conduction current density to displacement current density is equal to $\sigma/\omega\epsilon$, where $\sigma=$ conductivity of the medium, $\epsilon=$ permittivity of the medium, $\epsilon=$ angular frequency. (CO3, K2)	6
3.f.	Define directivity of an antenna and find the relationship between directivity and gain of antenna.	6
3.g.	Design a Horn antenna.	6
SECTIO	Design a From antenna. DN-C er any one of the following:-	50
4. Answe	er any one of the following:-	
4-a.	Illustrate line, surface and volume integrals. (CO1, K1)	10
4-b.	Explain the Laplacian equation in all three coordinate systems and find the Laplacian of the scalar field $V = \rho z^2 \sin 2\phi$. (CO1, K2)	10
5. Answe	er any one of the following:-	
5-a.	State and explain Gauss's law. Prove that div $D = \rho_v$ for an electrostatic field, Where D is the electric flux density and ρ_v is the volume charge density. (CO2, K2)	10
5-b.	Derive an expression for continuity equation and relaxation time. (CO2,K2)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	State and explain Maxwell's equations for time varying fields in differential and integral forms and their significance. (CO3, K2)	10
6-b.	Explain the plane wave in free space. (CO3, K2)	10
7. Answe	er any one of the following:-	
7-a.	Define the Antenna gain and also discuss various types of directional parameters of an antenna. Corelate them in terms of Antenna efficiency. (CO4, K2)	10
7-b.	Discuss radio communication link and derive the FRIIS transmission formula mathematically and also path loss. (CO4, K3)	10
8. Answe	er any <u>one</u> of the following:-	

8-a.	What is the condition of frequency independence in antennas. Explain the log	10
	periodic antenna using proper diagram and expressions. (CO5, K3)	

8-b. Explain the structure of microstrip antenna. Discuss its feed mechanism and application. (CO5, K2)

