Printed Page:-04		Subject Code:- ACSE0403B Roll. No:								
NO	OIDA	INSTITUTE OF ENGINEERING A	ND TECH	HNO	LOG	Y. GI	REA'	rer i	NOI	DA
		(An Autonomous Institute Afl								
		B.Te	_							
		SEM: IV - THEORY EXAM			4 - 20	(25)				
Tin	3 I	Subject: Opera Hours	iting Syste	ems			М	ov M	Iarlz	s: 100
		structions:					171	.ax. 1v.	lai K	.S. 100
		y that you have received the question p	aper with t	the co	rrect	cour	se, co	de, bi	ranci	h etc.
1. Thi	s Que	stion paper comprises of three Section	s -A, B, &	C. It	consi	sts of	Mult	iple (Choic	ce
_		MCQ's) & Subjective type questions.				0	-	_		
		n marks for each question are indicated	_		side	of eac	ch qu	estion	•	
		your answers with neat sketches wher witable data if necessary.	ever neces	sary.						
		ly, write the answers in sequential orde	er.							
	-	should be left blank. Any written mate		blank	k shee	t will	not b	pe -		
evalu	ated/c	hecked.								
							N			
<u>SECT</u>	<u> ION</u>	<u>-A</u>					X			20
1. Att	empt	all parts:-) /				
1-a.	T	he operating system is responsible for	?(CO1, K2))						1
	(a)	bad-block recovery								
	(b)	booting from disk								
	(c)	disk initialization	V							
	(d)	all of the mentioned								
1-b.	A	program in execution is called	(CC)1, K	1)					1
	(a)	Process								
	(b)	Instructions								
	(c)	Procedure								
	(d)	Function								
1-c.	C	consider an arbitrary set of CPU-bound	processes	with	unequ	ıal CI	PU bu	ırst le	ngth	s 1
	St	abmitted at the same time to a compute	er system. V	Which	one	of the	follo	owing		
	_	rocess scheduling algorithms would mi	inimize the	aver	age w	aiting	g time	e in th	e	
		eady queue? (CO2, K2)								
	(a)	Shortest remaining time first								
	(b)	Round-robin with time quantum less	s than the s	shorte	st CP	U bu	rst			
	(c)	Uniform random	_	.= -						
	(d)	Highest priority first with priority pr	-				_			
1-d.	T	the portion of the process scheduler in a	an operatin	g sys	tem tl	nat di	spatc	hes		1

	pı	cocesses is concerned with(CO2, K2)					
	(a)	assigning ready processes to CPU					
	(b)	assigning ready processes to waiting queue					
	(c)	assigning running processes to blocked queue					
	(d)	all of the mentioned					
1-e.	For a deadlock to arise, which of the following conditions must hold simultaneously (CO3, K2)						
	(a)	Mutual exclusion					
	(b)	No preemption					
	(c)	Hold and wait					
	(d)	All of the mentioned					
1-f.	M	Message passing system allows processes to(CO3, K2)					
	(a)	communicate with each other without sharing the same address space					
	(b)	communicate with one another by resorting to shared data					
	(c)	share data					
	(d)	name the recipient or sender of the message					
1-g.		Memory management technique in which system stores and retrieves data from secondary storage for use in main memory is called? (CO4, K2)					
	(a)	fragmentation					
	(b)	paging					
	(c)	mapping					
	(d)	none of the mentioned					
1-h.		When the entries in the segment tables of two different processes point to the same physical location(CO4, K2)					
	(a)	the segments are invalid					
	(b)	the processes get blocked					
	(c)	segments are shared					
	(d)	all of the mentioned					
1-i.	D	Device drivers are implemented to interface(CO5, K2)					
	(a)	character devices					
	(b)	block devices					
	(c)	network devices					
	(d)	all of the mentioned					
1-j.	In which method, the file allocation table contains a separate one level index for each file, the index has one entry for each portion allocated to the file(CO5, K2)						
	(a)	Chained allocation					
	(b)	Indexed allocation					
	(c)	Contiguous allocation					

(0	l) Variable allocation	
2. Attem	pt all parts:-	
2.a.	Define Spooling.(CO1, K2)	2
2.b.	Take any example and explain convoy effect? (CO2, K2)	2
2.c.	Define co- operating process and independent process.(CO3, K2)	2
2.d.	Discuss page fault and page hit? (CO4, K2)	2
2.e.	Compare SCAN and C SCAN. (CO5, K3)	2
SECTIO	0N-B	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Discuss about the functionality of system boot with respect to operating system. (CO1, K2)	6
3-b.	State the advantages and disadvantages of distributed system (CO1, K2)	6
3-c.	Discuss how the following pairs of scheduling criteria conflict in certain settings. i) CPU utilization and response time ii) Average turn around time and maximum waiting time iii)I/O device utilization and CPU utilization (CO2, K3)	6
3-d.	Explain Round Robin scheduling algorithm with example (CO2, K2)	6
3.e.	Discuss the atomic operations of Semaphore and show how mutual exclusion can be implemented.(CO3, K3)	6
3.f.	What is address binding? Explain the concept of dynamic relocation of addresses.(CO4, K2)	6
3.g.	How free space is managed? Explain.(CO5, K3)	6
SECTIO	N-C	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	What are the various objectives and functions of Operating systems? Discuss in detail.(CO1, K2)	10
4-b.	What are system calls? Explain different categories of system calls with example. (CO1, K2)	10
5. Answe	er any one of the following:-	
5-a.	Explain in detail about the Threads and their management . (CO2, K2)	10
5-b.	What is the role of Scheduler? What requirement is to be satisfied good scheduling algorithm.(CO2, K3)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Discuss Process State Transition diagram with example.(CO3, K2)	10
6-b.	How a producer consumer problem is solved using semaphores? (CO3, K2)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	What do you understand by fragmentation? What are different techniques to remove fragmentation in case of multiprogramming with fixed and variable partition?(CO4, K2)	10

- 7-b. Let us Consider the following reference string 1,3,2,4,0,1,7,4,0,2,3,5,1,0,7,1,0,2

 .How many page faults will occur for: i. FIFO Page Replacement ii. LRU Page
 Replacement iii. Optimal Page Replacement Assuming three and four frames
 (initially empty). (CO4, K3)
- 8. Answer any one of the following:-
- 8-a. Consider a disk with 200 tracks and the queue has random requests from different processes in the order: 55, 58, 39, 18, 90, 160, 150, 38, 184 Initially arm is at 100 moving towards higher track number. Find the Average Seek length using all disk scheduling algorithms (i) FIFO, (ii) SSTF, (iii) SCAN and (iv) C-SCAN (CO5, K3)
- 8-b. Explain the three allocation methods in file system implementation. Illustrate with proper diagram. (CO5, K2)

COP. JULY DEC. 2024