Printe	d Paş	ge:- 04 Subject Code:- ACSE0401 /ACSEH0301 Roll. No:
NOI	IDA I	INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
		(An Autonomous Institute Affiliated to AKTU, Lucknow)
		B.Tech SEM: IV - THEORY EXAMINATION - (2024 - 2025)
		Subject: Design and Analysis of Algorithm
Time	e: 3 E	Hours Max. Marks: 100
Genera	al Ins	structions:
		y that you have received the question paper with the correct course, code, branch etc.
		stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice MCQ's) & Subjective type questions.
_		n marks for each question are indicated on right -hand side of each question.
		your answers with neat sketches wherever necessary.
		uitable data if necessary.
•		ly, write the answers in sequential order.
		should be left blank. Any written material after a blank sheet will not be hecked.
Cvainai	icu/ci	neckeu.
SECT		
	_	all parts:-
1-a.	T1	he Θ notation in asymptotic evaluation represents $-$ (CO1,K1)
	(a)	Worst Case
	(b)	Average Case
	(c)	Best Case
	(d)	Null Case
1-b.	_	of an algorithm is the amount of time required for it to execute(CO1,K1) 1
	(a)	Time complexity
	(b)	Space complexity
	(c)	Compiling time
	(d)	Best case
1-c.	In	B-tree maximum no of keys areif order 4 and of height 3. (CO2,K3) 1
	(a)	255
	(b)	63
	(c)	127
	(d)	188
1-d.	T	he best case height of a B-tree of order n and which has k keys is: (CO2,K1)
	(a)	log n (k+1) -1
	(b)	nk

	(c)	logk(n+1) - 1			
	(d)	klogn			
1-e.	T	ime complexity of Depth First Search algorithm is: (CO3, K1)	1		
	(a)	O(V lg E)			
	(b)	O(E+V)			
	(c)	O(lg V)			
	(d)	O(E lg E)			
1-f.	We can solve Single-Source shortest path problem using (CO3,K1)				
	(a)	Kruskal's Algorithm			
	(b)	Prim's Algorithm			
	(c)	Dijkstra's Algorithm			
	(d)	Flyod-Warshal Algorithm			
1-g.	_	methods can be used to solve the longest common	1		
		ubsequence problem. (CO4,K1)			
	(a)	Recursion			
	(b)	Dynamic programming			
	(c)	Both recursion and dynamic programming			
	(d)	Greedy algorithm			
1-h.	(d) Greedy algorithm The n-queens problem implemented in : (CO4,K1) (a) carom (b) chess (c) ludo				
	(a)	carom			
	(b)	chess			
	(c)	ludo			
	(d)	cards			
1-i.		Travelling Salesman Problem belongs to: (CO5,K1)			
	(a)	NP-Complete Problem			
	(b)	NP-Hard Problem			
	(c)	NP-soft Problem			
	(d)	None of them			
1-j.		he sum and composition of two polynomials are always polynomials (CO,K1)]		
	(a)	TRUE			
	(b)	FALSE			
	(c)	None			
	(d)	Sometimes			
	-	all parts:-			
2.a.		Vrite down the characteristics of algorithm. (CO1,K1)	2		
2.b.	D	efine RED- BLACK tree.(CO2,K1)	2		
2.c.		rifferentiate between single source shortest path and all pair shortest path roblem. (CO3,K3)	2		

2.d.	Differentiate between Backtracking and Banch and Bound.(CO4,k3)	2
2.e.	Define NP- hard problem . (CO5,K1)	2
SECTIO	<u>ON-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Explain asymptotic notations with example.(CO1,K2)	6
3-b.	Sort the following elements using Shell sort algorithms and specify its complexity. < 60, 20, 50, 10, 70, 90, 40, 30>. (CO1, K3)	6
3-c.	Insert the following keys into empty B-tree: 86, 23, 91, 4, 67, 18, 32, 54, 46, 96, 45 with degree t=2 and delete 18, 23 from it. (CO2,K3)	6
3-d.	Define B-Tree and write down it's properties.(CO2,K1)	6
3.e.	Use Merge sort to sort the given array in non-decreasing order <18,19,11,13,12,14,17,15>.(CO3,K3)	6
3.f.	Explain the Graph Coloring Problem with example . (CO4,K2)	6
3.g.	Explain NP-hard.Demonstrate approximation algorithm for NP hard problem. (CO5,K2)	6
SECTIO	<u>ON-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Solve the recurrence relation using Iteration Substitution method. (CO1, K3) $T(n)=1$ $n=0$ $T(n)=T(n-1)+1$ $n>0$	10
4-b.	Write the algorithm of Counting sort? Sort the following elements using Counting sort algorithm < 8, 4, 4, 2, 6, 9, 9, 2, 9> (CO1,K3)	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Write algorithm for extracting minimum element in a fibonacci heap. Also give example? (CO2,K1)	10
5-b.	Write algorithm for union of two binomial heaps. Also write its complexity. (CO2,K1)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Write Quicksort algorithm. Also show Step by Step sort the following sequence in increasing order using Quicksort algorithm <11,21,31,41,51,61,71,81>. (CO3,K3)	10
6-b.	Write Kruskal algorithm to find minimum spanning tree and analyze its time complexity. Explain with example. (CO3,K1)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Consider the sum-of-subset problem, $n = 4$, Sum = 13, and $w1 = 3$, $w2 = 4$, $w3 = 5$ and $w4 = 6$. Find a solution to the problem using backtracking. Show the statespace tree leading to the solution. (CO4)	10
7-b.	Solve the instance of $0/1$ knapsack problem using dynamic Programming : $n = 4$, $M = 25$, $(P1, P2, P3 P4) = (10, 12, 14, 16)$, $(W1, W2, W3, W4) = (9, 8, 12, 14)$. $(CO4,K3)$	10

- 8. Answer any one of the following:-
- 8-a. Define the following problems related to NPC: (CO5,K1)

10

- (i) Vertex Cover
- (ii) Clique
- (iii) SAT and its variants
- 8-b. Explain the KMP String matching algorithm for finding the pattern on a text and analyze the algorithm. (CO5,K2)

COR. JUILA DEC. 2021