Printed Page:-04		Subject Code:- AAS0102 Roll. No:				
			NOII. 140:			
NOIDA INSTITUTE OF ENGINEERING A			ND TECHN	OLOGY	GREATER	NOIDA
-,-		(An Autonomous Institute Affi			,	
		B.Teo	_			
		SEM: I - THEORY EXAMIN	•		25)	
Tim	3 I	Subject: Engineer Hours	ing Chemis	try	Mov N	Iarks: 100
		structions:			Max. IV	1a1 KS. 100
		y that you have received the question po	aper with the	correct c	course, code, bi	ranch etc.
1. Thi	s Que.	stion paper comprises of three Sections	s -A, B, & C.	It consis	ts of Multiple (Choice
_		MCQ's) & Subjective type questions.				
		n marks for each question are indicated your answers with neat sketches where	_	-	f each question	
		your answers with neat sketches where uitable data if necessary.	ver necessar	у.		
		ly, write the answers in sequential order	r.			
6. No	sheet	should be left blank. Any written mater	ial after a bl	ank sheet	will not be	
evalud	ated/cl	hecked.				
					N	
SECT	TION-	<u>-A</u>				20
1. Atte	empt a	all parts:-				
1-a.		thoose the incorrect statement from the	following. A	good fue	el is one which:	1
		CO1,K1)				
	(a)	is readily available				
	(b)	Produces a large amount of heat.				
	(c)	Leaves behind many undesirable subs				
1 1	(d)	burns easily in air at a moderate speed		.:	NO1 IZ1)	1
1-b.		he lubrication used in high-load & high	-speed opera	ition is (C	.O1,K1)	1
	(a)	Thick film lubrication				
	(b)	Thin film lubrication				
	(c)	Extreme pressure lubrication				
	(d)	Enzyme lubrication				
1-c.		low many phases exist when CaCO ₃ is	s heated '?(CC) 2,K2)		1
	(a)	1				
	(b)	2				
	(c)	3				
	(d)	4				
1-d.	C	themical formula of Lime and soda?(CC	02 ,K1)			1
	(a)	CaO and NaOH				
	(b)	Ca(OH) ₂ and Na ₂ CO ₃				

	(c)	CaCO ₃ and H ₂ CO ₃				
	(d)	CaCl ₂ and CaCO ₃				
1-e.	W	That is the total number of cells present in a 12-volt battery? (CO 3,K2)	1			
	(a)	5				
	(b)	6				
	(c)	3				
	(d)	4				
1-f.	Е	Electronation is also called as electrode (CO 3,K1)				
	(a)	Oxidation				
	(b)	Electrifying				
	(c)	Reduction				
	(d)	Electro chemical cell				
1-g.	N	ame the polymer which is used for making ropes. (CO 4,K1)	1			
	(a)	Polypyrrole				
	(b)	Polyester				
	(c)	Polystyrene				
	(d)	None of the above				
1-h.		The fibre obtained by the step polymerization of hexa methylene diamine & adipic acid (CO 4,K2)				
	(a)	terylene				
	(b)	Nylon 6,6				
	(c)	Nylon 6				
	(d)	Bakelite				
1-i.	N	MR is the study of absorption of by nuclei in a magnetic field. (CO	1			
	5,	K1)				
	(a)	Radioactive radiation				
	(b)	IR radiation				
	(c)	Radio frequency radiation				
	(d)	Microwaves				
1-j.	S	ignal splitting in NMR arises from? (CO 5,K1)	1			
	(a)	Shielding				
	(b)	Spin-spin decoupling				
	(c)	Spin-spin coupling				
	(d)	Deshielding				
2. Att	empt a	all parts:-				
2.a.	W	rite the formula to calculate NCV of fuel. (CO1,K1)	2			
2.b.	1	degree Clarke = 1 part of CaCO3 per parts of water. (CO2,K1)	2			
2. c	S 1	tandard exidation potential of Cd/Cd^{2+} and Pb/Pb^{2+} elactrodes is -0.40 and -0.13	2			

	V respectively. State whether the following cell is feasible and give its cell potential. (CO 3,K2)	
2.d.	Give the preparation reaction of Urea formaldehyde polymers. (CO 4,K2)	2
2.e.	The shifting of NMR signal due to Shielding or Deshielding is called (CO 5,K1)	2
SECTIO	<u>ON-B</u>	30
3. Answ	ver any five of the following:-	
3-a.	Define calorific value of a fuel. The following data is obtained in a Bomb Calorimeter experiment:-	6
	Weight of Crucible = 3.649 gm Weight of crucible + Fuel = 4.687 gm Water equivalent of calorimeter = 570 gm Water taken in calorimeter = 2200 gm Observed rise in temperature = 2.3 °C Cooling Correction = 0.047 °C Acid correction = 62.6 calories Fuse wire correction = 3.8 calories Cotton thread correction = 1.6 calories Calculate the gross calorific value of the fuel sample. If the fuel contains 6.5%	
	hydrogen then, determine the net colorific value.(CO 1,K3)	
3-b.	Write steps involve in ultimate analysis. The ultimate analysis of a coal(moist basis in %): C 69.8, H 4.6, N 1.4, O 8.5, S 2.5, H ₂ O 4.5 and ash 8.7. Calculate, the gross calorific value of the coal by using Dulong's formula.(CO 1,K3)	6
3-c.	Why does soap do not give lather with hard water? write the involve reactions (CO 2,K3)	6
3-d.	State the phase rule .Explain the terms involve in it. (CO 2 ,K3)	6
3.e.	Write a balanced chemical equation for reaction in the airbag gas generator (CO 3,K3)	6
3.f.	What are the properties and applications of composite materials? (CO 4,K2)	ϵ
3.g.	What is Fullerene? Explain its structure .(CO 5,K3)	6
SECTION	ON-C	50
4. Answ	ver any one of the following:-	
4-a.	Write the compositions of biogas ? How biogas is prepare in biogas plant . (CO1 ,K3)	10
4-b.	What do you understand with Emission Standards? What are advantages of BS-VI Over BS-IV? (CO1,K3)	10
5. Answ	ver any one of the following:-	
5-a.	Discuss the hot Lime-Soda process for the treatment of hard water with its	10

5-b.	what is coagulant? A water sample using FeSO ₄ as a coagulant at the rate of 278 ppm, gave following data on analysis for raw water:	
	$Ca^{2+} = 240 \text{ ppm}; Mg^{2+} = 96 \text{ ppm}; CO_2 = 44 \text{ ppm HCO}_3^- = 732 \text{ ppm},$	
	Calculate the lime and soda required to soften 250,000 litres of water. (CO 2,K3)	
6. Answe	er any <u>one</u> of the following:-	
6-a.	Explain sacrificial anodic and impressed cathodic current protection method for prevention of corrosion. (CO3,K3)	10
6-b.	With the help of Band theory, classify the materials with respective diagrams(CO 3 K3)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Comment on "blending will improve the properties of the molecule", Give suitable example. (CO 4 K3)	10
7-b.	Give five commercially available polymer blends and their uses. (CO 4 K3)	10
8. Answe	er any <u>one</u> of the following:-	
8-a.	What is principle of Raman Spectroscopy? Discuss five Applications of Raman spectroscopy.(CO 5,K3)	10
8-b.	Write short notes on properties and applications of Fullerene. (CO 5 K2)	10